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Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our
understanding of the genesis of this injury andof potential interventions to prevent, limit, or reverse
injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways
involved in facilitating and abrogatingmicrovascular injury. The statement summarizes the types of
injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the
kidney, and the peripheral nervous system; the statement also reviews information on the effects of
diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac
and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular
complications of diabetes continue to compromise the quantity and quality of life for patients with
diabetes. Hopefully, by understanding and building on current research findings, we will discover
new approaches for prevention and treatment that will be effective for future generations. (J Clin
Endocrinol Metab 102: 1–68, 2017)

The cellular elements of the microvasculature appear to
be particularly sensitive to injury from sustained

hyperglycemia. This injury (and responses by the body
directed toward its repair) cause tissue/organ dysfunction
that affects the quality and duration of life for persons
with either type 1 diabetes mellitus (T1DM) or type 2
diabetes mellitus (T2DM). Despite the disparate patho-
genesis of these two common forms of diabetes, they
(along with secondary forms of diabetes resulting from
genetic mutations or pharmaceutical or surgical in-
terventions) all share microvascular injury/dysfunction

as a chronic outcome. This scientific statement provides
an up-to-date overview of the general pathogenesis of
microvascular disease in diabetes, as well as its impact on
specific tissues. As such, this statement provides readers
with a clear understanding of how microvascular injury
adversely affects the normal physiologic function of
multiple tissues within the body. This statement does not
attempt to provide a compendium of all of the organ-
specific treatments for limiting microvascular damage
that are in use or in development. Nor do we attempt to
review/critique the more general systemic approaches to
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treatment designed to control glycemia, blood pressure
(BP), lipids, or oxidative stress.

At the outset, we are reminded that the very di-
agnosis of diabetes rests on identifying the level of
blood glucose that associates with microvascular in-
jury to the eye. In addition, much of the impetus for
developing effective glycemic therapy arises from
clinical trials that demonstrate that improved glyce-
mic control decreases the incidence and progression of
microvascular injury.

The body’s microvasculature is a diffuse target
whose properties differ considerably between different
tissues and organs. The response of the microvascu-
lature to injury/repair likewise differs across tissues
and organs. For this reason we chose to use an organ-
based organizational structure for this scientific state-
ment. However, although we discuss the microvascular
complications of diabetes on an organ-by-organ basis, we
recognize that in the individual patient all organs are
affected simultaneously to a greater or lesser degree (i.e.,
evident microvascular dysfunction found in one organ
is a sentinel of systemic injury, which may be preclinical).

Biochemical Pathways of
Microvascular Injury

Introduction
Vascular complications are the major cause of mor-

bidity and mortality in diabetic patients. These result
from interactions between systemic metabolic abnor-
malities, such as hyperglycemia, dyslipidemia, genetic

and epigenetic modulators, and local tissue responses to
toxic metabolites. Macrovascular complications involve
atherosclerotic/thrombotic obstructions, such as those
that occur in coronary, cerebral, and peripheral artery
diseases. Classic microvascular pathologies include reti-
nopathy, nephropathy, and neuropathy, but brain, myo-
cardium, skin, and other tissues are also affected. In this
work, we focus on cellular/molecular mechanisms causing
diabetic microvascular pathologies.

Hyperglycemia is the major systemic risk factor for di-
abetic microvascular complications. The Diabetes Control
and Complications Trial (DCCT) in T1DM and the United
Kingdom Prospective Diabetes Study (UKPDS) in T2DM
clearly demonstrated that intensive blood glucose control
delays the onset and retards the progression of diabetic
microvascular complications (1, 2).

Hyperglycemia alone, however, is not sufficient to
trigger generalized diabetic microvascular pathologies
(e.g., only 20% to 40% of diabetic patients will ulti-
mately develop chronic renal failure), suggesting that as
yet unidentified genetic or other endogenous protective
factors play important roles (3, 4). The Joslin Diabetes
Center 50-Year Medalist Study of patients surviving
.50 years with T1DM has shown that 30% to 35% are
without significant microvascular complications, regard-
less of their hemoglobin A1c (HbA1c) levels and other
classical risk factors thought to predict diabetic vascular
complications (3). These patients may possess endogenous
tissue factors that diminish the adverse microvascular
effects of hyperglycemia.

Research has suggested that multiple biochemical path-
ways link the adverse effects of hyperglycemia with vascular
complications. Cellular mechanisms include the following:
nonenzymatic glycation and the formation of advanced
glycation end products (AGEs); enhanced reactive oxygen
production and actions; endoplasmic reticulum (ER) stress;
and the activation of the polyol pathway, the diacylglycerol
(DAG)–protein kinaseC (PKC) pathway (5), Src homology-
2 domain-containing phosphatase-1 (SHP-1), and the renin-
angiotensin system (RAS) and kallikrein-bradykinin (BK)
systems. It is likely that hyperglycemia-induced intracellular
and extracellular changes alter signal transduction path-
ways, thus affecting gene expression and protein function
and causing cellular dysfunction and damage.

Molecular mechanisms of injury
Research has described multiple abnormalities in

cell signaling, gene expression, and the regulation of
cell biology and physiology in diabetes, and it is likely
that many of these abnormalities operate concurrently
to cause various diabetic microvascular complications.
These mechanisms may be active preferentially in some
(although probably not all) vascular tissues or organs, but

(Continued). CKD, chronic kidney disease; CMB, cerebral microbleed; CMI, cerebral
microinfarct; CNS, central nervous system; CVD, cardiovascular disease; DAG, diac-
ylglycerol; DCCT, Diabetes Control and Complications Trial; DKD, diabetic kidney disease;
DN, diabetic nephropathy; DPN, diabetic peripheral neuropathy; DR, diabetic retinopathy;
DSPN, distal symmetric polyneuropathy; DTI, diffusion tensor imaging; ECM,
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generally they are associated with the development of
complications in several organs (Fig. 1). We will discuss
seven mechanistic pathways that appear to be involved in
diabetic microvascular injury, as well as several poten-
tially protective factors. The emphasis in this study is
on cellular mechanisms; we will cite mechanism-based
efforts at clinical interventions but not analyze them
in detail.

The activation of PKC in vascular tissues
PKC is a family of serine/threonine-related protein

kinases that includes multiple isoforms and affects many
cellular functions and signal transduction pathways (6).
Phosphatidyl serine, calcium, DAG, and phorbol esters
(such as phorbol-12-myristate-13-acetate) activate the
conventional PKC isoforms PKCa, b1, b2, and g.
Phosphatidyl serine and DAG (but not calcium) also
activate the novel PKC isoforms PKCd, «, f, and h.
Neither calcium nor DAG activates the atypical PKC
isoforms PKCz and i/l. Hyperglycemia, per se, modulates
PKC activation. In addition, oxidants (e.g., H2O2 and
superoxide) can also activate PKC in a manner unrelated
to lipid second messengers (7, 8). Many abnormal vas-
cular and cellular processes, including endothelial dys-
function, vascular permeability, angiogenesis, cell growth
and apoptosis, vessel dilation, basement membrane (BM)
thickening, extracellular matrix (ECM) expansion, and al-
tered enzymatic activity of mitogen-activated protein kinase
(MAPK), cytosolic phospholipase A2, Na+–K+

–adenosine
trisphosphatase (ATPase), and several transcription
factors, are attributed to the activation of several PKC
isoforms. Diabetes increases PKC activity in skeletal

muscle and the renal glomeruli, retina, myocardium, and
liver. Among the isoforms of PKC, the a, b, and d iso-
forms are most consistently implicated in diabetic vas-
cular complications.

The activation of DAG–PKC pathway and diabetes
DAG levels are elevated chronically in the hyper-

glycemic diabetic environment due to increased levels of
glycolytic intermediate dihydroxyacetone phosphate.
This intermediate is reduced to glycerol-3-phosphate,
which subsequently increases de novo synthesis of DAG
(9). In diabetes, studies reported that total DAG levels
were elevated in the retina (10) and renal glomeruli (11).
However, there is no consistent change in DAG levels in
the central nervous system (CNS) or peripheral nerves
(12). Cell culture studies have shown that as glucose
levels rise from 5.5 to 22 mmol/L, DAG levels increase
in a time-dependent manner in aortic endothelial cells
(13), retinal pericytes (14), smooth muscle cells (9),
kidney proximal tubular cells (15), and renal mesangial
cells (16). Increased DAG synthesis can also occur from
dihydroxyacetone phosphate that accumulates when
poly adenosine 50-diphosphate (ADP) ribosylation in-
hibits glyceraldehyde-3-phosphate dehydrogenase in
the presence of high glucose concentrations (17). Ele-
vated cytosolic glucose levels promote the accumulation
of glyceraldehyde-3-phosphate, which can increase
DAG and activate PKC (18). In an experimental model
of diabetes, large doses of thiamine and thiamine
monophosphate derivative (benfotiamine) appear to
decrease the formation of DAG and mitigate PKC
activation (19).

Figure 1. Schema of hyperglycemia’s induced pathways to microvascular complications. MAP, mitogen-activated protein.
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PKC activation and the development of
diabetic nephropathy

Experiments in diabetic rodents support a role for PKC
in the pathogenesis of diabetic nephropathy (DN). PKCa,
b, and d isoforms are activated in renal glomeruli isolated
from streptozotocin (STZ)-induced diabetic rats (20) and
mice, and 50% of the increase in PKC activity in renal
glomeruli is prevented in PKCb knockout mice (21).
PKCa activation can upregulate vascular endothelial
growth factor (VEGF) expression through nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (22).
PKCa knockout mice are protected against BM pro-
teoglycan losses induced by VEGF (23). In wild-type
mice, diabetes increases NADPH oxidase activity and
induces the expression of endothelin 1 (ET-1), VEGF,
transforming growth factor b (TGF-b), connective tissue
growth factor, and collagen types IV and VI. These
changes are partly prevented in PKCb knockout mice
(21). Mesangial expansion and albuminuria in mice with
STZ-induced diabetes are reduced in both PKCb (21) and
PKCd (24) knockout vs wild-type mice.

General PKC isoform inhibitors can interact with
other kinases and can have significant toxic side effects.
The PKCb inhibitor ruboxistaurin (RBX) is a bisindo-
lylmaleimide class agent that selectively inhibits PKCb1
and PKCb2 (25). Rottlerin (mallotoxin) has higher af-
finity for PKCd but also inhibits other isoforms of PKC
(26) and other non-PKC kinases, such asMAPKs, protein
kinase A, and glycogen synthase kinase-3 (27). Orally
administered RBX reversed glomerular hyperfiltration
and reduced urinary albumin excretion in diabetic ro-
dents without a change in DAG content (28). In addition,
glomerular TGF-b1 expression, mesangial expansion,
glomerulosclerosis, tubule-interstitial fibrosis, and renal
function all improved (28). In Ren-2 diabetic rats, RBX
attenuated macrophage recruitment, tubulointerstitial
injury associated with TGF-b activation, and increases in
PKC-induced osteopontin expression in tubular epithelial
cells of the renal cortex (29).

Remarkably, PKC« may have effects on DN that are
opposite to the effects of PKCa, b, and d. One study
showed that knockout of PKC« upregulated renal TGF-b1
and its downstream signaling and increased the expression
of fibronectin and collagen type IV, which caused glo-
merular and tubulointerstitial fibrosis and the devel-
opment of albuminuria (30). These changes were further
aggravated by diabetes (30). Therefore, PKC« may act
as a protective factor by reducing kidney damage.

Supporting the relevance of these findings to human
DN, one study associated polymorphisms of the PKCb
gene with accelerated kidney disease (KD) in Japanese
T2DM subjects (31), and another study associated
polymorphisms in the PKCb-1 gene with end-stage KD

(ESKD) in Chinese patients with T2DM (32). However,
efforts to treat DN by inhibiting PKC activation with
RBX have generally been disappointing, as illustrated
by a secondary analysis of three DN trials (33), which
showed no differences in kidney outcomes with RBX
treatment.

PKC activation and the development of
diabetic retinopathy

The early stages of diabetic retinopathy (DR) are
characterized by the loss of pericytes in capillaries of
the retina, followed by weakness in the capillary wall,
microaneurysm formation and fluid leakage, and in-
creased adhesion of leukocytes and monocytes to the
endothelium (34). Hyperglycemia activates PKCa, b, d,
and « (18) in retinal tissues and alters ET-1 and VEGF
activity and nitric oxide (NO) levels in endothelial cells,
as well as levels of platelet-derived growth factor (PDGF),
reactive oxygen species (ROS), and nuclear factor kB in
pericytes (35). Administering RBX to diabetic rats can
reduce retinal PKC activation and normalize retinal
blood flow (RBF) (36, 37). In vessels isolated from di-
abetic animals, NO-dependent acetylcholine-induced
vessel relaxation is delayed (38), and the PKC agonist
phorbol-12-myristate-13-acetate impaired vascular re-
laxation in otherwise normal arteries (39).

The mechanism for reduced RBF mediated by PKCb
involves the upregulation of ET-1 synthesis in the retina
of diabetic rats (40). RBX treatment can block this in-
duction of retinal ET-1 (40). VEGF (through signaling
involving PKCb) (41) helps mediate diabetic macular edema
to increase the phosphorylation of occludin (a component
of tight junctions), leading to increased vascular perme-
ability (42) and kallikrein activation (43). Hyperglycemia
may also increase endothelial cell permeability via PKCa
activation (44).

Recently, researchers have clarified the actions of PKC
on vascular cell proliferation and death. Both PKCb and
PKCd isoforms are translocated to themembrane fraction
in total retinal lysates of diabetic mice, but the conse-
quences of PKCb, d, and « isoform activation are very
different. PKCd induces cell apoptosis (14), whereas
PKCb enhances cell growth (45). Accordingly, the ele-
vation of membranous PKCd levels in diabetes correlated
with the appearance of retinal pericyte apoptosis in vitro
and acellular capillaries in vivo. In vivo studies reported
that the induction of PKCd in the retinal capillaries of
diabetic mice led to PDGF resistance; this was not true
with PKCd knockout mice. Hyperglycemia (through
PKCd action) promotes two distinct important pathways,
as follows: (1) increasing ROS production and nuclear
factor k light chain enhancer of activated B cell (NF-kB)
activity, and (2) decreasing the survival-signaling pathway

4 Barrett et al Diabetic Microvascular Disease J Clin Endocrinol Metab, December 2017, 102(12):1–68

Downloaded from https://academic.oup.com/jcem/article-abstract/doi/10.1210/jc.2017-01922/4604942
by White and Case LLP user
on 13 November 2017 http://guide.medlive.cn/

http://guide.medlive.cn/
http://guide.medlive.cn/


of PDGF by upregulating SHP-1 expression. These findings
suggest a pivotal role for PKCd in regulating pericyte ap-
optosis and the formation of cellular capillaries (14).

In animal studies, inhibiting PKCb ameliorated the
decline of RBF typically associated with DR and de-
creased diabetes-induced vascular leakage (36). Similarly,
the stimulus for neovascularization is suppressed in an-
imals with reduced PKCb levels (45, 46). More recently,
Nakamura showed that subcutaneous RBX treatment
reduced retinal neovascularization (induced in neonatal
mice) by returning the retina to normoxia (21%O2) after
exposure to hyperoxia (75%O2). In addition, Nakamura
et al. (47) reported that the RBX antiangiogenic effects
were due, in part, to suppressed phosphorylation of
extracellular signal-regulated protein kinases 1 and 2
and Akt.

In phase II clinical trials (PKC-Diabetic Retinopathy
and PKC-Diabetic Macular Edema Studies) (48), RBX
failed to alter the primary outcome (loss of visual acuity).
However, there was a significant reduction in the sec-
ondary endpoint—the progression of diabetic macular
edema. A much larger clinical trial (PKC-Diabetic Reti-
nopathy Study 2) that administered a single daily dose
(again using the loss of visual acuity, as the primary
endpoint) (49) reported that RBX treatment significantly
prevented the loss of visual acuity for diabetic patients
with moderate vision loss and decreased the onset of
diabetic macular edema (50). These results suggest that
PKC activation, especially of the b isoform, could par-
ticipate in the development of nonproliferative DR.
However, RBX did not delay the progression of vascular
DR. This suggests that inhibiting the PKCb isoform alone
is not adequate to stop the metabolic changes that drive
the progression of proliferative DR.

PKC and the development of diabetic
peripheral neuropathy

Neuropathy is one of the most distressing complica-
tions of diabetes and involves the entire peripheral ner-
vous system (51). Healthy nerves receive a rich supply of
blood from the vasa nervorum (52). Hyperglycemia can
damage neuronal cells by impairing vasodilation and
increasing capillary BM thickening and endothelial hy-
perplasia, which diminish oxygen tension (52, 53). Ad-
ditionally, hyperglycemia reduces Na+K+ ATPase activity,
which is essential for maintaining normal nerve mem-
brane resting potential, as well as providing neurotrophic
support (54).

The contribution of PKC activation to diabetic pe-
ripheral neuropathy (DPN) is still unclear. Hyperglyce-
mia does not increase DAG content in nerve cells, nor is
there any consensus as to whether it increases, decreases,
or has any effect on PKC activity (55).One study reported

that high glucose concentrations in neurons can decrease
phosphatidylinositol, thereby decreasing DAG levels and
actually decreasing PKC activity. This diminished activity
reduces the phosphorylation of Na+K+ ATPase, leading
to a decrease in nerve conduction and regeneration.
Immunochemical analysis demonstrated the presence of
PKCa, b1, b2, g, d, and « isoforms in nerves (56). A
previous study that directly measured sciatic nerve tissues
in STZ diabetic rats also reported a reduction of PKC
activity (57). However, these results contrast with recent
studies showing that treating diabetic animals with
nonselective PKC isoform inhibitors, as well as selective
PKCb inhibitors, improved neural function (58). Some
animal studies have reported that PKCb inhibitor
treatments improved nerve conduction as well as neu-
ronal blood flow (59). Indeed, Cameron et al. showed
that low-dose RBX treatments improve motor nerve
conduction velocity, normalize nerve blood flow, and
restore Na+K+ATPase activity in diabetic rats (60). In
humans, 1 year of RBX treatment did not significantly
affect vibration detection threshold and Neuropathy
Total Symptoms Score-6, but may have benefitted a
subgroup of patients with less severe symptomatic DPN
(61, 62). More recently, Boyd et al. (63) reported that
RBX produced significant improvements in large fiber
measures, quality of life (QOL), and Neuropathy Total
Symptoms Score-6 in diabetic patents.

In summary, there is substantial evidence that PKCb
mediates some of the micropathologies in the early stages
of microvascular complications. However, it is also clear
that the effective prevention or treatment of these mi-
crovascular complications may involve inhibiting mul-
tiple PKC isoforms, including a, b, and d.

The polyol pathway and the pathogenesis of
diabetic microvascular complications

Increased cellular glucose uptake elevates glucose flux
through multiple pathways, including the polyol path-
way (also known as the sorbitol pathway). Aldose re-
ductase (AR), the first enzyme of this pathway, has a Km
between 5 and 10 mM glucose, which allows it to be
active only when intracellular glucose is elevated. This
pathway consumes NADPH in the AR reaction and re-
duces nicotinamide adenine dinucleotide (NAD)+ in the
sorbitol reductase reaction (64). A hyperactive polyol
pathway may deplete cytosolic NADPH, which is nec-
essary to maintain the primary intracellular antioxidant
[glutathione (GSH)] in its reduced state. In mice, deleting
AR2/2 reduced retinal neovascularization and capillary
permeability. Furthermore, the expression of VEGF, p-Erk,
p-Akt, and p-IkB was significantly reduced in AR2/2 retina
(65). In diabetic mice induced to have retinal ischemia by
transient middle cerebral artery occlusion, AR2/2 leptin
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receptor-deficient diabetic (db/db) mice had significantly
less retinal swelling than the db/db control mice; this cor-
related with a reduced expression of the water channel
aquaporin 4 (66). Similarly, AR deficiency in the renal
glomeruli protects themice from the diabetes-induced ECM
accumulation and collagen IV overproduction. Further-
more, AR deficiency completely or partially prevented
diabetes-induced glomerular hypertrophy and activation of
renal cortical PKC and TGF-b1. In diabetic AR2/2 mice,
loss of AR resulted in reduced urinary albumin excretion
(67) and protection from the decreased motor and sensory
nerve conduction velocities (NCVs) seen in diabetic AR+/+

mice. Sorbitol levels in the sciatic nerves of diabetic AR+/+

mice were increased significantly, whereas sorbitol levels in
the diabetic AR2/2 mice were significantly lower. In ad-
dition, the study reported signs of oxidative stress [such as
increased activation of c-Jun NH(2)-terminal kinase, de-
pletion of reduced GSH, increased superoxide formation,
and DNA damage] in the sciatic nerves of diabetic AR+/+

mice, but not diabetic AR2/2 mice. This indicates that the
diabetic AR2/2micewere protected from oxidative stress in
the sciatic nerve (68). Polymorphisms in the promoter gene
region of AR are associated with susceptibility to neurop-
athy, retinopathy, or nephropathy, and these associations
have been replicated in patients with either T1DM or
T2DM, as well as across several ethnic groups (69).

Animal studies using AR inhibitors showed promise
with regard to an effect on DN or DR, but clinical trials
since the 1980s have generally not confirmed such effects
in patients with diabetes, except in Japan, where AR
inhibitor treatments are approved for DN.

Oxidative stress and the pathogenesis of diabetic
microvascular complications

The production of superoxide and other ROS in
vascular cells may play an important role in the patho-
genesis of vascular diseases in general and particularly in
the diabetic state. A major source of superoxide in vas-
cular cells is the NOX family of NADPH oxidases that
favors reduced NAD as a substrate (70). The elevation of
oxidants and signaling enzymes, like PKC, can induce
NOX1, 2, 4, and 5 in endothelial and contractile vascular
cells (70). The expression and activity of NOX are in-
creased in the vascular tissue of rodents with T1DM (71)
and T2DM (72). An increase in the reduced NAD/NAD+

ratio may activate NOX. In diabetes this may be caused
by an increased flux through the polyol pathway (see
previous description) or through the activation of poly
(ADP-ribose) polymerase (73) or PKC (74). In animal
models, Baicalein, a NOX inhibitor, reduced vascular
hyperpermeability and improved retinal endothelial cell
barrier dysfunction (75). However, the role of NOX
isoforms in the pathogenesis of KD in diabetes is unclear.

For example, NOX2 deficiency did not protect NOX2
knockout mice against DN, despite a reduction in
macrophage infiltration (76). Administering apocynin, a
NOX inhibitor, corrected the vascular conductance
deficits and reversed the reduction of sciatic nerve motor
conduction velocity and sensory saphenous nerve blood
flow induced by diabetes (77).

Mitochondria are another important source of
ROS. The elevated intracellular glucose concentration in
diabetes can yield excessive mitochondrial-reducing
equivalents, thus increasing the proton gradient. This
inhibits the transfer of electrons from reduced coenzyme
Q-10 (ubiquinone) to complex III of the electron trans-
port chain (64). As a result, these electrons are trans-
ferred to molecular oxygen, which results in superoxide
production.

By promoting DNA strand breaks, oxidative stress can
activate poly(ADP-ribose) polymerase, which can acti-
vate NF-kB and cause endothelial dysfunction (73).
Oxidative stress can also inhibit the proteasomal deg-
radation of homeo-domain–interacting protein kinase 2,
which promotes kidney fibrosis through the activation of
p53, TGF-b, and Wnt (78).

When cultured rat mesangial cells are incubated with
high glucose, adding an inhibitor of the tyrosine kinase
c-Src (which is activated by oxidative stress) reduces type
IV collagen accumulation (79). Similarly, in STZ-induced
diabetic mice, inhibiting c-Src in vivo reduced albumin-
uria, glomerular collagen accumulation, and podocyte
loss (79). Podocyte injury, a major contributor to the
genesis of diabetic glomerulopathy, may (in part) result
from excess ROS generation. Khazim et al. (80) reported
that the antioxidant plant extract silymarin reduced
the high glucose-induced apoptosis of cultured mouse
podocytes. In type I diabetic mice, it reduces glomer-
ular podocyte apoptosis and albuminuria. Another
study reported that silymarin treatment reduced the
urinary excretion of albumin in T2DM patients with
macroalbuminuria and suggested silymarin as a treat-
ment of preventing the progression of DN (81).

ROS overproduction can also cause major retinal
metabolic abnormalities associated with the develop-
ment of DR. NF-E2–related factor 2 (Nrf2) (a redox-
sensitive factor) provides cellular defenses against the
cytotoxic ROS. In stress conditions, Nrf2 dissociates
from its cytosolic inhibitor [Kelch erythroid cell-derived
protein with CNC homolog-associated protein (Keap)
1] and moves to the nucleus to regulate the transcription
of multiple (.30) antioxidant genes, including the
catalytic subunit of glutamyl cysteine ligase, a rate-
limiting enzyme for reduced GSH biosynthesis (see
section on antioxidant enzymes). Diabetes increased
retinal Nrf2 and its binding to Keap1 but decreased the
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DNA-binding activity of Nrf2l, as well as its binding to
the promoter region of glutamyl cysteine ligase. A study
reported similar impairments in Nrf2-Keap-glutamyl
cysteine ligase in endothelial cells exposed to high
glucose and in the retina from donors with DR (82).

To date, large clinical trials using antioxidants have
not shown that the vitamins E, C, or a-lipoic acid (ALA)
have a significant effect on definitive clinical endpoints
for preventing or treating DR and other vascular com-
plications (83–85).

Motor and sensory neuron myelination and nerve
conduction decline with DPN; however, the mechanisms
responsible are poorly understood. Chronic oxidative
stress is one potential determinant of demyelination, as
lipids and proteins are important structural constituents
of myelin and are highly susceptible to oxidation. Using
the db/db mouse model of DPN and the superoxide
dismutase 1 knockout mouse model of in vivo oxidative
stress, Hamilton et al. (86) reported recently that oxidation-
mediated protein misfolding and the aggregation of key
myelin proteins may be linked to demyelination and re-
duced nerve conduction in peripheral neuropathies.

Some studies have reported high oxidative status and
oxidative stress index together with low serum total
antioxidant status in serum from DPN patients (87). In a
double-blind placebo-controlled trial of DPN subjects,
vitamin E improved electrophysiological parameters of
nerve function, including motor NCV and tibial motor
nerve distal latency (88). Furthermore, a meta-analysis of
15 randomized controlled trials (RCTs) reported that the
antioxidant ALA significantly improved both NCV and
positive neuropathic symptoms (89). Despite this, it is
clear that we will need better antioxidants if they are to
significantly delay the progression of diabetic micro-
vascular pathologies.

Protein glycation and diabetic
microvascular complications

Sugars, such as pentosidine, carboxymethyllysine,
methylglyoxal, and pyraline, can cause AGE forma-
tion (90). AGE formation can occur via a nonenzymatic
reaction between glucose and protein through the
Amadori product 1-amino-1-deoxyfructose adducts
to lysine. However, faster reactions take place between
proteins and intracellularly formed dicarbonyls, including
3-deoxyglucosone, glyoxal, and methylglyoxal, which
result in the cross-linking of proteins. Due to their long
turnover rate, structural extracellular proteins (such as
collagen) accumulate more AGE modification. AGEs are
probably present in all tissues of diabetic and/or ageing
patients. AGE modification of ECM proteins and sig-
naling molecules may alter their function. In addition,
AGE-modified extracellular proteinsmay bind to receptors,

the most well-characterized being the receptor for AGE
(RAGE) (91). Most cells express RAGE—including the
following: endothelial cells, mononuclear phagocytes,
smooth muscle cells, pericytes, mesangial cells, podo-
cytes, and neurons—and RAGE may play a role in the
regulation of these cells in homeostasis and/or their
dysfunction in the development of diabetic complica-
tions (92). Binding to RAGE on the endothelial cell
surface can stimulate NOX and increase ROS, p21
RAS, and MAPK. The AGE–RAGE interaction may
also stimulate signaling via p38 MAPK and Rac/Cdc;
however, its exact mechanism is unclear because RAGE
is not an enzyme. A key target of RAGE signaling in the
endothelium is NF-kB, which is translocated to the
nucleus, where it increases the transcription of a
number of different proteins, including ET-1, intercellular
adhesion molecule-1, E-selectin, and tissue factor (93). The
ability of RAGE signaling to cause diabetic complications
has been reported in transgenic mice overexpressing
both inducible NO synthase (iNOS) targeted to b cells
(providing a model for T1DM) and RAGE in all cells.
These double-transgenic mice develop accelerated glomer-
ular lesions (94), which an AGE inhibitor prevents (94).
Conversely, a soluble RAGE prevents the development
of increased vascular permeability and atherosclerosis in
experimental diabetes (95). Furthermore, RAGE fusion
protein inhibitor administered to STZ-diabetic rats had
beneficial effects on early DR or DN (96). Clinical trials
are ongoing for small molecule antagonists of RAGE
(97). Researchers have used other approaches to inhibit
tissue accumulation of AGE in diabetes, including AGE
formation inhibitors, such as aminoguanidine, ALT 946,
and pyridoxamine, or putative cross-link breakers, such
as ALT 711 (98).

Interestingly, not all AGEs or their actions affect
vascular cells adversely. Several recent studies have re-
ported inverse correlations of carboxymethyl-lysine and
fructose-lysine with vascular complications (4).

The renin-angiotensin system and the pathogenesis
of diabetic microvascular complications

A large number of clinical trials have clearly shown
that angiotensin-converting enzyme (ACE) inhibitors,
angiotensin type-1 receptor blockers, or the combination
may delay the onset of renal disease or progression to
renal failure (99). However, an analysis of renal biopsies
from T1DM patients treated with these drugs did not
report improved glomerular pathology, indicating that
RAS inhibition may only delay the progression of func-
tional impairment in DN (100). The kidney produces
angiotensin I and angiotensin II (Ang II) locally, and part
of the renoprotective effect of ACE inhibition (in addition
to lowering systemic BP) is a decrease of glomerular
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capillary pressure. Ang II actions may also lead to kidney
damage through the induction of local factors, including
ECM protein synthesis via TGF-b and inflammatory
cytokines (101). Ang II receptors mediate angiotensin
action, including the activation of RAF kinase/MAPK
and multiple inflammatory cytokines, such as tumor
necrosis factor-a, interleukin 6, and others (102). Fur-
thermore, RAS blockade may improve or delay the de-
velopment of DR and macular edema in diabetic patients
(103) and DR in normotensive, normal albuminuric
T1DM patients (104). This suggests their beneficial ef-
fects may bemore than just the reduction of BP. In animal
models of diabetes, the renin inhibitor aliskiren provided
similar or greater protection thanACE inhibition alone to
decrease nonproliferative DR and proliferative neo-
angiogenesis in oxygen-induced retinopathy. In trans-
genic TGR(mRen-2)27 rats, which overexpress mouse
renin in extrarenal tissues, aliskiren treatment reduced
retinal acellular capillaries and leucostasis and normal-
ized retinal VEGF expression (105).

ER stress and diabetic microvascular complications
The ER plays an important role in Ca+2 and redox

homeostasis, lipid biosynthesis, and protein folding. In-
creases in protein synthesis, protein misfolding, or per-
turbations in Ca+2 and redox balance can disturb ER
function, causing ER stress. This triggers a coordinated
program (the unfolded protein response) that reduces
translation and increases protein-folding capacity to re-
store ER homeostasis. With chronic, unresolved ER
stress, the unfolded protein response can initiate signaling
that promotes apoptosis. Unfolded protein response
genes are upregulated in kidney tissue from patients with
diabetes, and ER stress may be a mediator of DN. Mice
with STZ-induced diabetes and knockout of C/EBP ho-
mologous protein are protected from DN (106). In the
retina of rats with STZ-induced diabetes, ER stress is also
involved in increased vascular permeability and the
upregulation of inflammatory genes and VEGF (107).
These and other findings have prompted the development
of therapeutics to reduce ER stress. These include syn-
thetic chaperones to promote protein folding, as well as
inhibitors of CCAAT/enhancer-binding homologous
protein and other molecules that interfere with protein
folding (107).

Several studies have also implicated ER dysfunction in
the pathogenesis of DPN. In cultured Schwann cells,
knockout of antiapoptotic protein ORP150 promoted
high glucose-induced Schwann cell apoptosis, whereas
knockout of C/EBP homologous protein protected
Schwann cells from apoptosis (108). In rat models of
high-fat STZ diabetes, knockout of ORP150 induced
DPN in early diabetes and exacerbated DPN after

prolonged diabetes, whereas knockout of the proapoptotic
protein C/EBP homologous protein ameliorated DPN in
rats with prolonged diabetes.

The kallikrein-bradykinin system and the develop-
ment of diabetic microvascular complications

Plasma kallikrein is a serine protease with well-
characterized effects in innate inflammation and the in-
trinsic coagulation cascade (109). Themajority of plasma
kallikrein’s physiological actions are attributed to the
cleavage of factor XII and high-molecular-weight kini-
nogen. The conversion of factor XII to factor XIIa leads to
the activation of factor XI and the intrinsic coagulation
cascade, which results in fibrin production and thrombus
stabilization. Kininogen cleavage releases the nonapeptide
BK, which is the ligand for the G protein–coupled BK2
receptor (BK2R). Subsequent BK cleavage by carboxy-
peptidases generates des-Arg9-BK, which binds and ac-
tivates the BK1 receptor (BK1R). The activation of
BK2R by BK and the activation of BK1R by des-Arg9-
BK are associated with nearly all the effects the plasma
kallikrein-kinin system (KKS) has on inflammation,
vascular function, BP regulation, and nociceptive re-
sponses (110). Plasma KKS is also associated with a
variety of coagulation, vascular, and metabolic ab-
normalities in diabetes. However, most studies have
examined the physiological effects of the KKS using BK
receptor-targeted approaches.

The kallikrein-kinin system and diabetic retinopathy
Experimental studies have demonstrated that KKS

activation can result in biological effects that also occur in
DR (e.g., increased vascular permeability and edema);
promote changes in vascular diameter and hemody-
namics; and affect inflammation, angiogenesis, and neu-
ronal functions.

Retinal vascular permeability and blood flow
Activating the KKS by injecting C1 esterase inhibitor

into the vitreous increases retinal vascular permeability
(RVP). The coinjection of C1-inhibitor (C1-INH) (a
neutralizing antibody against plasma kallikrein) and a
small-molecule plasma kallikrein inhibitor (1-benzyl-1H-
pyrazole-4-carboxylic acid 4-carbamimidoyl-benzylamide)
inhibited this response (111). Intravitreal plasma kalli-
krein’s effect is greater in diabetic rats compared with
nondiabetic rats, suggesting that diabetes enhances the
retinal responses to intraocular KKS activation (111).
Systemic administration of ASP-440 decreased RVP both
in diabetic rats and in rats subjected to Ang II–induced
hypertension (111, 112). Intravitreal BK injection in-
creased RVP in both diabetic and nondiabetic rats,
whereas only diabetic rats demonstrated a RVP response
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to des-Arg9-BK (112, 113). A BK1R antagonist reduced
RVP in STZ-induced diabetic rats (113, 114). These data
suggest that activating KKS in the circulation, and/or
locally in the retina and vitreous, can increase RVP via
both BK1R and BK2R mediation, and that diabetes in-
creases actions mediated via BK1R.

KKS can also regulate retinal vessel diameters and
hemodynamics. Intravitreal or intravenous BK injections
acutely increased retinal vessel diameters and blood flow
in adult cats (115) and rats (116), respectively. Des-Arg9-
BK increased vessel diameters in the retinal vessels of
diabetic rats, but not in the retinal vessels of nondiabetic
controls (117). These effects of BK1R and BK2R on
retinal vessel dilation are dependent on NO and pros-
taglandin in vascular endothelial cells. BK1R blockade
reduces the retinal expression of potential inflammatory
mediators (including iNOS and cyclooxygenase-2), NG-
nitro-L-arginine methyl ester, and indomethacin. In ad-
dition, the BK2R antagonist Hoe140 inhibited in vitro
BK-induced vasodilation responses (117, 118). BK and
Des-Arg9-BK increase intracellular free calcium by
coupling Ga q/11 or Ga i/o through the BK2R or BK1R,
respectively (119, 120). The increased Ca+2 can stimulate
phospholipase A2 to liberate arachidonic acid from
membrane phospholipids, which can increase prosta-
cyclin (121) and increase NO synthase (NOS) phos-
phorylation via Ca+2/calmodulin-dependent activation.
However, under inflammatory conditions, BK1R stim-
ulation results in a much higher and prolonged NO
production via Ga(i) activation of the MAPK pathway,
leading to iNOS activation (120, 122). Endothelial NOS
(eNOS) and iNOS activation can independently and
additively increase NO production (120, 123). BK also
activates the Src kinases and the subsequent vascular
endothelial cadherin phosphorylation, leading to the
quick and reversible opening of endothelial cell junc-
tions and plasma leakage (124).

Kallikrein-kinin system inhibitors: novel therapeutic
applications to diabetic retinopathy

Targeting the KKS could occur at multiple levels,
including the inhibition of the contact system, selective
inhibition of plasma kallikrein activity, and blockade
of BK receptors. Plasma kallikrein inhibitors include
endogenous inhibitors, engineered proteins, and small
molecules. C1-INH is a primary physiological inhibitor
of plasma kallikrein, factor XIa, factor XIIa, C1r, and
C1s proteases. Both plasma-derived and recombinant
forms of C1-INH are effective treatments for hereditary
angioedema (125). Intravitreal injection of exogenous
C1-INH reduced retinal vascular hyperpermeability
induced by diabetes and by intravitreal carbonic
anhydrase-1 in rats (111). Although C1-INH is detected

in the vitreous, it is unknown whether intravitreal con-
centrations of this endogenous serpin protease inhibitor
are sufficient to inhibit plasma kallikrein. Exogenously
administered C1-INH into the vitreous may provide an
opportunity to inhibit the KKS, as well as other proteases
in the complement and intrinsic coagulation cascades.
Selective plasma kallikrein inhibition could provide in-
creased efficacy in targeting the inflammatory effects of
the plasma KKS while preserving the potential beneficial
effects of the tissue KKS.

The generation of peptides that can activate BK1Rs
and BK2Rs (which are expressed in a variety of ocular
cell types and tissues) in large part mediates the effects
of the KKS. Because both plasma kallikrein– and tissue
kallikrein–mediated pathways activate BK receptors,
the antagonism of these receptors blocks the effects of
both KKSs. Although both BK1Rs and BK2Rs can
induce RVP, BK1R appears to increase plasma ex-
travasation in DR. The selective peptide BK1R antag-
onist R-954 reduced vascular permeability in a variety
of tissues from STZ-induced diabetic rats, including the
retina (114). Treating STZ-induced diabetic rats with
R-954 for 5 days at the end of the 4- and 12-week
periods of diabetes reduced NO, kallikrein activity, and
capillary permeability, whereas retinal Na+,K+-ATPase
activity increased (126). Treating diabetic rats with
FOV-2304, a nonpeptide BK1R antagonist adminis-
tered via eye drops, reduced RVP and normalized the
retinal messenger RNA (mRNA) expression of in-
flammatory mediators (127). Pouliot et al. have re-
ported that one eye drop of the nonpeptide BK1R
antagonist LF22-0542 reversed retinal plasma extrav-
asation and RVP in the diabetic retina. These reports
indicated that both local and systemic administrations
of BK1R antagonists are effective in ameliorating ret-
inal vascular abnormalities in diabetic rodents, which
are similar to findings from studies using plasma kal-
likrein inhibitors (128).

Protection factors
Clinical observational studies in patients with long-

duration diabetes (e.g., the Joslin’sMedalist Study) tell us
that, in addition to metabolic toxic factors, there may be
equally important protective factors that spare the
function and survival of cells involved in microvascular
disease beyond the effect of glycemic control (3, 4). The
finding that over half of diabetic patients with micro-
albuminuria have regression of this marker over 6 years
of follow-up (129) also supports the possibility that en-
dogenous protective factors are common in the general
population. Researchers have only recently suggested
that some factors with well-established functions were
protective (Fig. 2).
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Insulin: selective insulin resistance on the vessel wall
in diabetes

Insulin receptors are present on vascular cells and cells
recruited to the vascular wall; these include endothelial
cells, vascular smooth muscle cells, pericytes, macro-
phages, and all the glomerular cells. Insulin signal
transduction in these cells occurs primarily by the acti-
vation of the insulin receptor substrate 1/2 (IRS1/2) and
phosphatidylinositol 3-kinase (PI3K)/Akt pathways,
which have been shown to phosphorylate eNOS, induce
the expression of VEGF and heme oxygenase-1, and
decrease expression of VCAM-1. Insulin also activates
the Src/MAPK pathway to induce the expression of ET-1
and the migration (and perhaps proliferation) of vascular
contractile cells (130). In diabetes or insulin resistance,
hyperglycemia or free fatty acids (FAs) activate PKCa, b,
or d to phosphorylate IRS2 and p85/PI3K and selectively
inhibit the p-Akt pathway in the vessel wall with the loss
of insulin’s anti-inflammatory and antioxidative effects
(130), whereas insulin activation of the MAPK pathway
persists. In the kidney, podocytes are critically important
for maintaining the integrity of the glomerular filtration
barrier and preventing albuminuria. Insulin receptor
signaling has a surprisingly profound effect on podocyte
survival. Mice with targeted knockout of the podocyte
insulin receptor (131) after 5 weeks of age developed

albuminuria, effacement of podocyte foot processes, and
increased apoptosis, together with increased deposition
of BM components. Some of these glomerular patholo-
gies were similar to those observed in DN. Some animals
also developed shrunken kidneys with scar tissue (similar
to the macroscopic appearance of kidneys in late-stage
DN), accompanied bymildworsening of kidney function.
This is notable because kidney function is not affected by
STZ-induced diabetes (the most commonly studied rodent
model of diabetes), despite albuminuria and histopatho-
logical changes. One explanation for the importance of
insulin action on podocytes is that insulin increases the
expression of VEGF in several cell types, including podo-
cytes (132). Insulin upregulates VEGF expression
mostly via the IRS/Akt pathway, which may act as a
survival factor for podocytes, endothelial cells, and
mesangial cells. Recently, Hale et al. (132) reported that
insulin directly increased VEGF-A mRNA levels and
protein production in conditionally immortalized wild-
type human and murine podocytes. Furthermore, when
podocytes were rendered insulin resistant in vitro (using
stable short hairpin RNA knockdown of the insulin
receptor) or in vivo (using transgenic podocyte-specific
insulin receptor knockout mice), podocyte VEGF-A
production was impaired. Insulin could also prevent
apoptosis by other mechanisms, including inhibiting

Figure 2. Interplay of hyperglycemia’s toxic mechanisms and tissues’ endogenous protective properties. IGF, insulinlike growth factor.
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proapoptotic molecule caspase-9 (133), inhibiting tran-
scription factor FoxO (134), or upregulating the antiox-
idant activity of heme oxygenase-1 (18).

Researchers have also described the selective (IRS1/
PI3K/Akt pathway) impairment of insulin action in the
glomeruli of diabetic animals and patients, which may
contribute to DN development. The IRS/PI3K/Akt path-
way mediates many of insulin’s protective effects, in-
cluding the upregulation of eNOS (135, 136) and heme
oxygenase-1 (18). In contrast, the Ras/MAPK pathway
mediates the induction of ET-1 (137). With diabetes or
insulin resistance, elevated concentrations of glucose and
free FAs can activate PKC and selectively inhibit insulin
signaling through the PI3K pathway (138). Certain
threonine/serine residues on IRS2 and on the p85 regu-
latory subunit of PI3K are substrates for PKC, and
phosphorylation of these sites inhibits insulin-stimulated
PI3K pathway signaling (139, 140). Hyperinsulinemia in
T2DM may promote vascular disease through the in-
duction of ET-1 (141) or other factors induced byMAPK
signaling.

Antioxidant enzymes
Although extensive evidence from cell- and animal-

based studies supports the role of oxidative stress in the
development of vascular complications, nearly all clinical
trials using antioxidants have failed to show efficacy with
clinically significant vascular endpoints.

Nevertheless, tissue-specific endogenous antioxi-
dant enzymes are most likely important to neutralize
the increased levels of oxidants seen with hyperglyce-
mia. This idea has stimulated clinical trials using
bardoxolonemethyl (142), a synthetic triterpenoid that
activates Nrf2. This nuclear factor upregulates a gene
program of molecules with antioxidant activity called
phase 2 genes, which includes heme oxygenase 1 and
enzymes in the GSH biosynthesis pathway. Keap1, a
repressor that binds Nrf2 in the cytoplasm and pro-
motes Nrf2 proteasomal degradation, inhibits Nrf2
translocation to the nucleus. Bardoxolone methyl in-
teracts with cysteine residues on Keap1, preventing
Nrf2 repression and allowing phase-2 gene transcrip-
tion. Results from a trial of bardoxolone methyl in
patients with advanced chronic KD (CKD) showed an
improvement in glomerular filtration rate (GFR) up to
1 year after start of treatment (143). However, pro-
teinuria was increased and researchers stopped phase-
III trials due to safety issues. Researchers also reported
thatNrf2 has a protective role in the retina against neuronal
and capillary degeneration in retinal ischemia–reperfusion
injury. InNrf2+/+mice, ischemia–reperfusion injury resulted
in leukocyte infiltration of the retina and vitreous and in-
creases in retinal levels of superoxide and proinflammatory

mediators. These changes were greatly accentuated in
Nrf22/2 mice (144).

PDGF and VEGF
PDGF expressed by retinal endothelial cells plays a

role both in vascular cell survival and proliferative reti-
nopathy (145). During sprouting angiogenesis, endo-
thelial tip cells produce PDGF, which acts through PDGF
receptor-b expressed by pericytes. This signal recruits
pericytes to develop blood vessels. Pericytes, in turn, can
support endothelial cell survival and inhibit its pro-
liferation. Reports of pericyte loss and endothelial cell
proliferation in PDGF knockout mouse embryos dem-
onstrate this process (146). Mice with heterozygous de-
letion of the PDGF gene not only have an increased
frequency of acellular capillaries (particularly after di-
abetes induction), but also an increased tendency for
retinal neovascularization during ischemic retinopathy
(147). As described previously, we have reported that
hyperglycemia can inhibit the survival effects of PDGF by
upregulating SHP-1, which causes dephosphorylation of
the PDGF receptor in pericytes and possibly also in
podocytes (14).

High glucose concentrations and diabetes can activate
SHP-1 (a tyrosine phosphatase) inmicrovessels, including
the retina and renal glomeruli. This leads to the de-
phosphorylation and deactivation of specific growth
factor receptors critical for the survival of pericytes in the
retina and podocytes in the kidney (14). One study re-
ported that SHP-1 regulates AGE-related endothelial cell
injury in vitro (148). In the retina of diabetic rodents,
SHP-1 activation can desensitize pericytes to PDGF and
cause pericyte apoptosis, an initiating step in the devel-
opment of DR (14). In the renal glomeruli, the upregu-
lation of SHP-1 expression can impair VEGF survival
signaling and increase podocyte apoptosis and endo-
thelial dysfunction (24). The upregulation of SHP-1 ex-
pression in diabetes depends on the activation of PKCd
and p38MAPKa transcription (14, 24), which is pre-
vented in PKCd knockout mice. These mice are protected
from the apoptosis of retinal pericytes, mesangial ex-
pansion, and albuminuria (14, 24). Therefore, inhibiting
SHP-1 is a potential novel approach to preserving sur-
vival signaling in vascular cells.

TGF-b1
TGF-b1 is a major inducer of profibrotic responses in

diabetic kidneys. Diabetes increases the expression of
TGF-b in blood vessels in many vascular beds, and one
study suggests that it is a causative factor for the devel-
opment of fibrosis in the kidney and other tissues (149).
An earlier study has shown that treating C57BLKS/J db/
db mice with neutralizing monoclonal TGF-b1 antibody
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decreases plasma TGF-b1, mesangial matrix expansion,
and kidney mRNA levels of collagen IV and fibronectin
(150). In addition, this therapy prevented a loss of renal
function but had no effect on the elevated albuminuria in
db/db mice. More recently, investigators have used an
inhibitor of TGF-b receptor kinase activity, GW788388,
to treat C57BLKS/J db/db mice (151). This therapy re-
duced glomerular collagen staining and kidney mRNA
levels of plasminogen activator inhibitor 1 and types I and
III collagen, but did not alter albuminuria (151).

However, numerous studies have reported that TGF-b
has potent anti-inflammatory effects on macrophages
and is a negative regulator of T cell and B cell activation.
Therefore, TGF-b may have protective actions due to an
anti-inflammatory effect, and its elevation may be a re-
action to the inflammatory stress of diabetes. Thus, it is
likely that diabetes-induced overexpression of TGF-b in
many tissues could be an endogenous response to the
inflammatory actions of hyperglycemia in vascular cells.
These paradoxical roles of TGF-b make it a challenging
drug target.

VEGF
VEGF expression changes paradoxically with di-

abetes, it increases in the retina and renal glomeruli, but it
decreases in the myocardium, peripheral limbs, and
nerves correlating with the extent of angiogenesis. VEGF
neutralization is already a treatment of proliferative DR
andmacular edema, and one study suggests it as a therapy
for DN (152). However, the increased levels of VEGF in
both tissues are most likely an appropriate response to
hypoxia, which results from loss of capillary function. It
has been a longstanding concern that neutralizing VEGF
could counteract survival signaling in retinal neurons.
Interestingly, injecting low doses of VEGF accelerated the
restoration of the physiological capillary bed and pre-
vented preretinal neovascularization in a mouse model of
proliferative retinopathy (153).

In the kidney, podocytes contain the highest level of
VEGF expression, and some of the most insightful work
describing a role for VEGF as a survival factor comes
from studies of renal podocytes. The conditional deletion
of VEGF in podocytes resulted in a complete lack of
endothelial and mesangial cells in mature glomeruli and
death within the first day of life (154). This finding
strongly supports a role for VEGF in the maintenance of
glomerular endothelial cells. The heterozygous knockout
of VEGF in podocytes of mice resulted in proteinuria and
ESKD in young adults (154) and was preceded by the
disappearance of endothelial cell fenestrations, increases
in necrosis, the effacement of podocyte foot processes,
and a dramatic loss of mesangial cells (154). Inducing
STZ diabetes in these mice exacerbated glomerular cell

apoptosis, glomerulosclerosis, and proteinuria compared
with nondiabetic controls (155). However, other studies
reported that increased podocyte VEGF (156) expression
worsens DN, characterized by glomerulosclerosis, micro-
aneurysms, mesangiolysis, glomerular BM thickening,
podocyte effacement, and massive proteinuria associated
with hyperfiltration (156).

VEGF also has neuroprotective effects. Primary dorsal
root ganglion cultures lacking VEGF-B or fms-like ty-
rosine kinase 1 (FLT-1) exhibited increased neuronal
stress and are more susceptible to paclitaxel-induced cell
death, and mice lacking VEGF-B or a functional FLT-1
develop more retrograde degeneration of sensory neu-
rons. Conversely, adding VEGF-B (157) to dorsal root
ganglia cultures antagonized neuronal stress, maintained
the mitochondrial membrane potential, and stimulated
neuronal survival. Mice overexpressing VEGF-B (157) or
FLT-1 selectively in neurons were protected against distal
neuropathy, whereas exogenous VEGF-B (157), de-
livered by either gene transfer or as a recombinant factor,
was protective by directly affecting sensory neurons and
not the surrounding vasculature (158). Identifying the
prosurvival mechanisms in stressed neuronal cells revealed
that protein kinase A functioned concurrently with the
VEGF receptor-2 pathway to signal the activation of
extracellular signal-regulated protein kinases 1/2 pro-
tection against caspase-3/7 activation and subsequent
cell death (159).

Activated protein C
Activated protein C (APC) is an anticoagulant factor

that acts as a survival factor for renal glomerular cells
(160). Thrombomodulin, a procoagulant factor that
activates protein C, is highly expressed in glomeruli of
mice, but downregulated in diabetes (160). Diabetic mice
with a loss-of-function thrombomodulin gene mutation
had more albuminuria and more severe glomerular pa-
thology than diabetic wild-type mice, whereas diabetic
mice with a gain-of-function mutation of the protein C
gene had less (160). The anticoagulant effects of APC did
not account for its protective actions. Rather, APC was
shown to counteract the apoptosis of endothelial cells and
podocytes through the activation of two of its receptors
(160). Therefore, endothelial-derived APC appears to act
as a protective factor with local survival effects for both
podocytes and endothelial cells in the glomerulus. The
underlying mechanism for APC protection from renal
dysfunction is still unknown. However, Li Calzi et al.
(161) reported that APC-mediated protease suppressed
lipopolysaccharide-induced increases in the vasoac-
tive peptide adrenomedullin, suppressed infiltration of
iNOS-positive leukocytes into renal tissue, and activated
receptor-1 agonism. The anticoagulant function of APC
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was responsible for suppressing lipopolysaccharide-
induced stimulation of the proinflammatory media-
tors ACE-1, interleukin-6, and interleukin-18, perhaps
accounting for its ability to modulate renal hemody-
namics (162).

Vascular progenitor cells
Bone marrow–derived cells, including endothelial

progenitor cells (EPCs) and myeloid progenitors, may
contribute to postnatal angiogenesis (163). EPCs may
contribute by incorporating into newly formed blood
vessels. However, it is likely themajor action of EPCs is to
release proangiogenic factors and temporarily associate
with neovascular structures. In diabetic patients, both the
number and function of EPCs are reduced (164),
impairing the ability of EPCs to repair the vascular en-
dothelium (165). The angiogenic potential of EPCs was
also reduced in diabetic animals (166).

The differentiation of bone marrow–derived EPCs may
also play a role (166). eNOS is necessary to mobilize EPCs
from bone marrow (167). Uncoupling eNOS that favors
superoxide rather than NO production may impair EPC
function. Indeed, EPC function improves after eNOS is
inhibited ex vivo in EPCs isolated from patients with di-
abetes (168). Interestingly, neuropathy in the bone mar-
row may reduce EPC mobilization. STZ-induced diabetes
in rats reduced nerve terminals in bone marrow, and this
correlated with increased EPCs in bone marrow and de-
creased EPCs released into the circulatory system. These
abnormalities were associated with an increase in retinal
acellular capillaries (169). Transplanting nondiabetic
EPCs into diabetic animals can improve angiogenesis after
peripheral ischemic injury (170).

These studies suggest that it may be possible to pro-
mote the repair of ischemic tissue in diabetes by im-
proving the mobilization, differentiation, and function of
EPCs or other progenitors. Recently, researchers have
suggested that autologous EPC transplantation could
be a potential therapy for DN. However, safety concerns
regarding possible unwanted proliferation or differenti-
ation of the transplanted stem cells might limit such
treatment. An alternative approach is to stimulate en-
dogenous bone marrow–derived EPC recruitment into
ischemic lesions by administering stem cell mobilization
agents or chemokines (171). Administering the EPC
mobilization agent AMD3100 increased the local ex-
pression levels of vasculogenesis-associated factors and
the number of newly formed endothelial cells in the sciatic
nerve, which restored the sciatic vasa nervorum (171).

Circulating EPCs are markedly reduced in CKD pa-
tients (172), and EPCs have been shown to improve renal
function, attenuate the proinflammatory response asso-
ciated with renal injury, and improve damaged tubules

and renal vascular segments during kidney injury while
providing enhanced neoangiogenesis (173). An intact and
healthy EPC niche, residing in the bone marrow but also
found locally in renal vascular beds (i.e., in the adventitia
layer of vessels), may be able to support normal vascular
function, including maintenance and possible replace-
ment of the endothelium (174).

Emerging studies in animal models suggest that EPCs
help revascularize ischemic and injured retinas. Thus,
EPCs could be a potential therapy for ischemic reti-
nopathies in humans, which are a leading cause of
blindness (161). In nonproliferativeDR, EPCsmay be less
effective, as they do not recruit other EPCs and repair the
acellular capillaries. In proliferative DR, the EPCs take
on a proinflammatory phenotype and recruit too many
EPCs, leading to pathological neovascularization.

For the last 10 years, many groups have focused on
understanding the basic mechanism responsible for the
diabetes-associated defect in EPC function. Correcting
this defect may allow diabetic patients to use their own
EPCs to repair injured retinal and systemic vascula-
ture. Specifically in the retina, correction of this dys-
function may prevent early and intermediate stages of
vasodegeneration (thus enhancing vessel repair), re-
verse ischemia, and prevent the progression to the late
stages of DR. However, these findings on the changes
of EPCs and their correlation to various complications
in diabetes have been inconsistent. Clearly, we need
more studies to clarify changes in diabetes and the role
EPCs play before patients can use them therapeuti-
cally (161).

Summary
Hyperglycemia initiates its adverse effects by in-

creasing its metabolites in vascular cells; this can cause
specific changes in vascular functions, such as those
mediated by PKC or ROS activation. However, increases
in glucose metabolism can also generate nondiabetic
specific toxic products (such as oxidants, AGE, and
methylglyoxal), which accelerate the specific toxic ac-
tions of hyperglycemia and cause microvascular pa-
thologies. The specific needs of various tissues (such as
the retina, glomeruli, and the peripheral neuron), the
importance of the various functions that are changed by
hyperglycemia, and the protective responses generated by
each tissue all modulate specific pathologic manifesta-
tions. Thus, treatments that prevent and delay the pro-
gression of diabetic microvascular complications must do
the following: (1) eliminate hyperglycemia; (2) inhibit the
majormechanisms that hyperglycemia activates to induce
vascular dysfunction; (3) neutralize accelerants, such as
inflammation and oxidative stress; and (4) activate tissue-
specific protective factors.
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Retinal Microvascular Disease

Introduction
DR and DN are considered the quintessential micro-

vascular complications of diabetes. These complications
are frequent and may result in severe visual impairment
and renal failure and are associated with poor QOL.
Plasma glucose and HgA1c concentration thresholds for
the diagnosis of diabetes have been established based
upon the correlation of these chemical indices to mi-
crovascular changes in the retina, as observed on fundus
photography.We review in this study the natural history,
pathogenesis, and epidemiology of DR development and
progression. We also review the impact of risk factors
and comorbidities on DR development and progression
and briefly discuss clinical management.

Natural history of DR
We know that a number of subclinical changes in the

physiology of the retinal vessels (retinal microaneurysms
and blot hemorrhages that can be detected by ophthal-
moscopy) occur in persons with diabetes prior to the
appearance of the first clinical signs (175). These changes
include disruption of the blood-retinal barrier and in-
creased RBF, most likely due to disturbances in autor-
egulation. Clinicians do not routinely measure this.
Another early change is widening of the retinal venules.
One study (in the absence of any other clinical signs of
DR) associated a widening of the retinal venules by
10 mm over a 4-year period, with a 26% increase in the
risk of incidentDRover the next 6 years (175). These data
suggest that measuring venular diameter may provide an
even earlier clinically measurable stage of DR than retinal
microaneurysms and blot hemorrhages.

Retinal microaneurysms are small outpouchings of the
retinal capillaries. Retinal blot hemorrhages often follow
but may appear prior to microaneurysms. Both lesions
are not pathognomonic of diabetes, as they may appear
in 2% to 11% of persons aged 40 years or older without
diabetes and are often associated with hypertension (176).

After the appearance of retinal microaneurysms and/
or blot hemorrhages, retinopathy may progress with the
appearance of other nonproliferative retinal abnormali-
ties, such as retinal hard exudates (lipid deposits in the
retina resulting from lipoprotein leakage from the retinal
microvasculature), cotton wool spots [small localized
infarctions of the nerve fiber layer of the retina (also
called soft exudates)], intraretinal microvascular abnor-
malities (collateral dilated capillary channels in areas of
retinal ischemia), and venous beading (irregular dilation
of retinal veins associated with significant retinal ische-
mia). Retinopathy may further progress to the prolifer-
ative stage, characterized by the development of new

retinal blood vessels and fibrous tissue at the optic disc or
near venules elsewhere in the retina. These new retinal
blood vessels may bleed, resulting in preretinal and vit-
reous hemorrhage, and the fibrovascular tissue can cause
traction on the macula, resulting in loss of vision. Al-
though the progression of proliferative disease in un-
treated eyes is the usual course, spontaneous regression of
the new retinal vessels may occur at any stage. Macular
edema (thickening of the retina in the macular area) may
also develop and regress without treatment. Although
clinicians can identify the source and extent of the leakage
in the macula by fluorescein angiography, they now
usually confirm the retinal thickness and response to
treatment in eyes with macular edema by spectral domain
optical coherence tomography (177). Visual loss may
result from macular edema or proliferative retinopathy.

Although retinopathy is believed to result from the
effects of hyperglycemia, hypertension, and high lipid
levels on the retinal microvasculature (see the section on
epidemiology), there is also growing evidence of con-
current early neurodegenerative changes of the ret-
inal neuronal cells (e.g., retinal ganglion and Mueller
cells, cones), which (in whole) we generally refer to as
the neurovascular unit (178). The neurodegenerative
changes are associated with impaired control of the
metabolism of neurotransmitter glutamate, apoptosis in
the ganglion cells and inner nuclear layer cells, and the
activation of microglial cells, resulting in localized in-
flammation (178–180). These neuronal changes result
in a loss of synaptic activity and loss of dendrites. Levels
of brain-derived neurotrophic factor are also reduced
(181, 182). Researchers have postulated that these
neuronal changes contribute to the development of
retinopathy by impairing autoregulation and vascular
integrity in persons with T2DM (183, 184). Retinal
flicker responses (a neurologic function) are impaired
before the onset of retinopathy in people with T1DM
(183, 185). Neuropathy may involve nerves in the
cornea and pupil in addition to the retinal neuron.
Retinal neurodegenerative changes may manifest clini-
cally as a decreased ability to discriminate blue from
yellow color, decreases in dark adaptation with de-
creases in the electroretinograph a-wave and b-wave
amplitudes, changes in the oscillatory potentials gen-
erated by inner retinal neurons, and changes in contrast
sensitivity (186). We have a poor understanding of the
temporal and causative relationships between the neu-
ropathic and retinopathic changes.

Pathogenesis
The pathogenesis of DR is complex (see Biochemical

Pathways ofMicrovascular Injury). A number of possible
mechanisms appear to contribute (157, 178, 187, 188)
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(Fig. 3). Hyperglycemia is an important initiator of the
disease process. Studies have shown that hyperglycemia
induces biochemical, physiological, rheological, hor-
monal, and other changes that are involved in the
pathogenesis of DR (Fig. 3). These abnormalities are
associatedwith the development of a number of anatomic
changes in the diabetic retina, which include pericyte
loss, endothelial cell abnormalities, acellular capillaries,
increased BM thickness, and retinal pigment epithelial
abnormalities.

It is likely that the initiation and progression of DR are
due to a complex relationship among a number of these
factors and pathways, which vary at different stages in
the natural history of DR and also vary from individual to
individual.

Epidemiology

Prevalence
Epidemiologic population-based studies have pro-

vided important descriptive information on the preva-
lence, incidence, and progression of DR, as well as
information on modifiable and potentially intervenable
risk factors, such as glycosylated hemoglobin, BP, and
lipid levels. The Wisconsin Epidemiologic Study of Di-
abetic Retinopathy (WESDR) provided data on the
prevalence and severity of DR by duration of diabetes
(Fig. 4) and the 4-year incidence and progression of DR

by age, sex, and duration of diabetes in younger-onset
persons with T1DMand older-onset persons with T2DM
(189–192). In the WESDR, the prevalence of DR in
patients with T1DM was 17% in those with ,5 years of
diabetes vs 98% in those with 15 or more years of di-
abetes; proliferative retinopathy was absent in those
with a shorter duration of diabetes, but present in 48% in
those with 15 or more years of diabetes. For persons with
older-onset T2DM for,5 years vs 15 or more years, the
prevalence of any retinopathy was 28% vs 78% and the
prevalence of any proliferative retinopathy was 2% vs
16%, respectively. The WESDR cohort is 99% white.
Data indicate a higher prevalence of retinopathy in
Mexican Americans and blacks with T2DM compared
with whites (Table 1), although the data reflect preva-
lence estimates from different time periods (192, 193).

Incidence
The duration of diabetes is associated with the in-

cidence and progression of retinopathy in those with
younger-onset T1DM. In the WESDR, half of the people
with,5 years of diabetes at baseline and no retinopathy
(n = 317) went on to develop retinopathy 4 years later
(191). For those with .5 but ,15 of years of diabetes at
baseline, there were too few persons with no retinopathy
at baseline to reliably calculate incidence by duration of
diabetes; however, the longer the duration of diabetes, the
greater the incidence of progression over the following

Figure 3. Conceptual diagram showing the effect of hyperglycemia on different mechanisms hypothesized to be involved in the pathogenesis of
diabetic retinopathy.
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4 years (191). Within duration-specific groups, the
incidence of retinopathy, proliferative retinopathy, and
macular edema was higher in Mexican Americans with
T2DM than in whites (194).

Risk factors

Glycemia
TheWESDR (Fig. 5), DCCT, and the Epidemiology of

Diabetes Interventions andComplications (EDIC) studies
confirmed the role of glycemic control as a critical risk
factor preceding the development and progression of DR
in persons with T1DM.

The UKPDS (195) and the Action to Control Car-
diovascular Risk in Diabetes (ACCORD)-Eye studies
made the same conclusion regarding persons with T2DM
(1, 196–198). One can see a decline in the levels of A1c
when examining the trends over .30 years of follow-up
of the group with T1DM in the WESDR (Table 2) (196).

ACCORD-Eye was a substudy of the ACCORD
trial, a RCT comparing the effects of intensive glycemic
control (A1c ,6.0%) with standard glycemic control
(A1c between 7.0% and 7.9%) that further randomized

BP and lipid medication for high levels
of each. The aim of this substudy was
to examine the effects of the primary
and secondary randomizations on the
progression of DR in persons with
T2DM. In a relatively short period
(4 years), the study found a lower risk
of DR progression (7.3%) in those in
the intensive-glycemic-control group vs
those in the standard-therapy group
(10.4%) [adjusted OR 0.67; 95%
confidence interval (CI): 0.51 to 0.87;
P = 0.003] (190).

Researchers terminated the inten-
sive glycemic-control phase of the
ACCORD-Eye trial early because of a
statistically significant 22% increase
in overall mortality in the intensive
glycemic-control group (196) of the
larger study. This early closure of the
intensive glycemic-control phase di-
minished the power to observe a pro-
tective effect for the severemicrovascular
endpoints, such as proliferative DR and
clinically significant macular edema,
which usually evolve over a longer
period. In the Action in Diabetes and
Vascular Disease: Preterax and Dia-
micron Modified Release Controlled
Evaluation (ADVANCE) trial, inten-
sive blood glucose control did not have

any effect on any of the retinopathy and vascular out-
comes in patients with T2DM (196).

The results of the UKPDS, ACCORD, ADVANCE,
and the Veterans Affairs Diabetes trial (199) (a RCT of
intensive glycemic control in people with T2DM) have
advanced the way we think about managing hypergly-
cemia in people with T2DM. For intensive therapy, the
American Diabetes Association Guidelines suggest a
target A1c level of 7.0% to reduce the risk of visual loss
from DR in persons with diabetes. Clinicians most likely
used this guideline to help people with T2DM manage
glycemia, as the National Health and Nutrition Exami-
nation Survey reported that the number of people with
T2DM taking three or more hypoglycemic drugs in-
creased from 1999 to 2006 (200). This has been ac-
companied by a decrease in mean A1c from 7.8% to
7.2% from 1996 to 1997 and an increase in the per-
centage (from 40% in 1996 to 1997 to 54% in 2004 to
2006) of persons aged 40 years or older with T2DM that
had A1c levels,7% (200). Data from the ACCORD and
ADVANCE trials and Veterans Affairs Diabetes trial
suggest the need to tailor intensive treatment to the

Figure 4. Prevalence of any retinopathy and proliferative retinopathy in persons with
diabetes by type/onset and duration in the Wisconsin Epidemiologic Study of Diabetic
Retinopathy. (A) T1DM diagnosed at age ,30 years. (B) T2DM diagnosed at age $30 years,
taking and not taking insulin.
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individual, especially in patients with long-standing
T2DM who have or who are at risk for developing
cardiovascular disease (CVD). The findings from these
studies may lead to a reduction in the number of persons
with T2DM meeting the American Diabetes Association
Guidelines of having an A1c of ,7%.

Hypertension
Uncontrolled hypertension in persons with both

T1DM and T2DM is associated with both DR (201) and
DN (202). Data suggest that its effect on blood flow
damages the retinal capillary endothelial cells, resulting in
the development and progression of DR (203).

The UKPDS was designed to test whether lowering BP
is beneficial in reducing macrovascular and microvas-
cular complications associated with T2DM (204). The
study assigned hypertensive participants (defined at the
time of the start of the trial in the 1980s as having a mean

BP reading of 160/94 mmHg) to tight BP control (aiming
for ,150/,85 mm Hg) and initial captopril or atenolol
treatment (adding other agents as needed) or to less-tight
BP control (aiming for ,180/,105 mm Hg). Tight BP
control resulted in a 35% reduction in retinal photoco-
agulation compared with the less-tight control group.
After 7.5 years of follow-up, there was a 34% reduction
in the rate of retinopathy progression and a 47% re-
duction in the deterioration of visual acuity. Atenolol and
captopril were equally effective in reducing the risk of
developing these microvascular complications, suggest-
ing that BP reduction was more important than the type
of medication used to reduce it. The effects of BP control
were independent of the effects of glycemic control. These
findings support the recommendations for BP control in
patients with T2DM as a means of preventing visual loss
from DR. Two years after completing the trial, follow-up
of the UKPDS cohort showed that the reduction in BPwas

Table 1. Prevalence of Diabetic Retinopathy and Vision-Threatening Diabetic Retinopathy in US Individuals
Age 40 and Older

Crude Prevalence of DR

Diabetes Population US Population

Characteristic Na Nb Weighted Size (in Thousands)c 95% CI P Value 95% CI P Value

Total 1006 324 4202 28.5 (24.9–32.5) 3.8 (3.2–4.5)
Age, years 0.64 ,0.001
40–64 575 189 2588 28.0 (23.0–33.6) 3.1 (2.4–3.9)
$65 431 135 1613 29.5 (25.4–33.9) 6.1 (5.1–7.3)
Sex 0.04 0.046
Male 504 173 2257 31.6 (26.8–36.8) 4.3 (3.5–5.3)
Female 502 151 1944 25.7 (21.7–30.1) 3.3 (2.7–4.1)
Race/ethnicity 0.008 ,0.001
Non-Hispanic white 396 107 2507 26.4 (21.4–32.2) 2.9 (2.2–3.9)
Non-Hispanic black 306 119 1006 38.8 (31.9–46.1) 9.6 (7.7–11.9)
Mexican American 197 70 401 34.0 (26.7–42.1) 6.7 (5.4–8.4)
Other 107 28 286 19.7 (12.5–29.7) 3.3 (2.3–4.7)

Crude Prevalence of Vision-Threatening DR

Total 1006 62 655 4.4 (3.5–5.7) 0.6 (0.5–0.8)
Age, years 0.41 0.009
40–64 575 36 376 4.1 (2.8–5.8) 0.4 (0.3–0.7)
$65 431 26 278 5.1 (3.5–7.3) 1.0 (0.7–1.5)
Sex 0.67 0.81
Male 504 24 298 4.2 (2.8–6.1) 0.6 (0.4–0.9)
Female 502 38 356 4.7 (3.2–6.9) 0.6 (0.4–0.9)
Race/ethnicity 0.006 ,0.001
Non-Hispanic white 396 13 304 3.2 (2.0–5.1) 0.4 (0.2–0.6)
Non-Hispanic black 306 28 241 9.3 (5.9–14.4) 2.3 (1.5–3.6)
Mexican American 197 16 85 7.3 (3.9–13.3) 1.4 (0.8–2.7)
Other 107 5 22 1.6 (0.6–3.8)d 0.3 (0.1–0.6)

Data were obtained from the National Health and Nutrition Examination Surveys, 2005 to 2008 (193).

Abbreviation: NHANES, National Health and Nutrition Examination Surveys.
aNumber of participants with diabetes in NHANES, 2005 to 2008.
bNumber of participants with diabetes who had DR or vision-threatening DR in NHANES, 2005 to 2008.
cWeighted total number of US adult population who had DR or vision-threatening DR.
dEstimate is considered unreliable because relative standard error is .30%.
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not sustained in the group that received tight BP control
(205). This was associated with loss of reductions in
relative risk present during the trial for diabetes-related
end points, such as death, microvascular disease, and
stroke in the group receiving tight BP control, as com-
pared with the group receiving less-tight BP control.

In the ACCORD study, hypertensive persons with
T2DM were randomized to intensive BP treatment tar-
geted to lowering the systolic BP to ,120 mm Hg or to
standard treatment targeted to maintaining systolic BP
,140mmHg (206). The average systolic BPwas 119mm
Hg in the intensive group and 133mmHg in the standard
group. Despite this 14 mm Hg difference, intensive BP
control was not associated with decreased progression of
DR, nor was it associated with a reduction in the hazard
of developing moderate loss of vision (206). There were
no statistically significant interactions with glycemic or
lipid control.

Other RCTs have targeted specific types of antihy-
pertensive agents, such as renin angiotensin system
blockade. The EURODIAB Controlled Trial of Lisinopril
in Insulin Dependent Diabetes Mellitus reported a bor-
derline beneficial effect of renin angiotensin system
blockade on the progression of DR in patients with
T1DM, independent of BP (207). The Renin-Angiotensin
System Study showed that the angiotensin-converting

enzyme inhibitor enalapril and the
Ang II receptor blocker (ARB) losartan
were both associated with a reduced
progression of retinopathy compared
with those not randomized to BP
medications, but these agents were not
associated with the progression of ne-
phropathy in subjects with T1DM
(100). However, the Diabetic Reti-
nopathy Candesartan Prevent and
Protect trials reported that candesartan
cilexetil did not result in a statistically
significant reduction in the progression
of DR in persons with T2DM (P =
0.0508) or in the incidence or pro-
gression in those with T1DM (208,
209). Neither the ACCORD nor the
ADVANCE studies found that lower-
ing BP in those with mild hypertension
or in those already normotensive was

of benefit in preventing the incidence and progression
of DR.

Together, these data suggest that lowering BP in those
who have poorly controlled hypertension provides the
greatest benefit in preventing the progression of reti-
nopathy, as shown in the UKPDS. The type of antihy-
pertensive medication used was less important; however,
the renin angiotensin system blockade had the greatest
efficacy in those with T1DM at moderate risk of DR
progression. Aggressive BP control,120mmHgwas not
indicated in persons with T2DM with mild or no hy-
pertension. The American Diabetes Association recom-
mends that people with hypertension should be treated
to a systolic BP goal of ,140 mm Hg and that patients
with BP .120/80 mm Hg should be advised on lifestyle
changes to reduce BP (210).

Serum lipids
Epidemiological studies have associated serum total

and low-density lipoprotein (LDL) cholesterol and tri-
glycerides with the severity of DR and diabetic macular
edema (211–214). In the Early Treatment Diabetic
Retinopathy Study, persons with higher levels of serum
triglycerides, LDL cholesterol, and very LDL cholesterol
at baseline had a 50% increased risk of developing hard
exudates in the macula and decreased visual acuity and a

Figure 5. Test of trend P , 0.001 for both groups.

Table 2. Mean Glycosylated Hemoglobin A1c Levels (%) at Each Examination in theWisconsin Epidemiologic
Study of Diabetic Retinopathy, 1980–2013

Baseline
1980–1982

4-Year
1984–1986

10-Year
1990–1992

14-Year
1994–1996

25-Year
2005–2007

33-Year
2012–2013

Glycosylated hemoglobin A1c, % 10.1 9.4 9.3 8.9 7.6 7.6
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23% increased risk of developing proliferative DR (206).
In the DCCT/EDIC Study, those with higher serum total
cholesterol, LDL cholesterol, and triglycerides (fourth vs
first quartile range) had a two- to threefold increase in the
odds of developing macular edema (215).

Pilot studies to examine the efficacy of statin therapy in
preventing or reducing the severity of macular edema
have suggested a possible short-term benefit (216–218).
In the Fenofibrate Intervention and Event Lowering in
Diabetes Study, fenofibrate was shown to reduce the need
for laser treatment of DR in persons with T2DM (hazard
ratio 0.69 95% CI: 0.56, 0.84, P = 0.0002), although the
effect was not clearly due to lowering of plasma lipid
concentrations (219). Fenofibrate (in the context of
simvastatin use in the ACCORD-Eye study) was asso-
ciated with a significant decrease in the three-step or
greater group [6.5% in the fenofibrate group vs 10.2% in
the placebo group (hazard ratio 0.60 95% CI: 0.42 to
0.87, P, 0.006)]. Therewas no effect onmoderate vision
loss. A recent study, which used the HealthCore In-
tegrated Research DatabaseSM containing administrative
claims data for .35 million Americans, examined mi-
crovascular complications of diabetes (e.g., DR and DN).
The incidence of microvascular complications of diabetes
was lower in patients who attained their goal of lower
serum LDL cholesterol, higher serum high-density lipo-
protein cholesterol, and lower serum triglycerides compared
with those who did not (220). In summary, accumulating
evidence suggests that lipid lowering may have a role in
limiting the development and progression of DR and
macular edema, but the pathways leading to this protective
effect are still unclear.

Other risk factors
There is evidence, mostly from clinical studies, that

AGEs and oxidative stress are associated with compli-
cations of diabetes. AGEs result from the long-term ex-
posure of proteins and lipids to hyperglycemia (via
nonenzymatic glycation of these molecules). AGEs have
been identified in renal lesions of persons with ne-
phropathy as well as in atherosclerotic streaks in large
blood vessels in persons with diabetes (221–224). The
accumulation of AGEs in people with diabetes is thought
to lead to retinopathy, nephropathy, neuropathy, CVD,
and cognitive dysfunction by directly damaging the tis-
sue. AGEs may also lead to increased oxidative stress,
endothelial dysfunction, inflammation, thrombosis, and
fibrinolysis, and they adversely affect the RAS. All of
these processes are hypothesized to be pathogenetic
mechanisms for these complications (93, 222, 225–228).
Some, but not all, clinical studies have associated serum
AGEs with diabetic complications, independent of A1c
levels.

The body normally generates oxidizing compounds as
an important component of the inflammation and tissue
repair processes (229, 230). It represents part of the
normal defense mechanism against invading microor-
ganisms and malignant cells and occurs during tissue
healing and remodeling. The retina exists in a highly
oxidizing environment and is thought to be especially
vulnerable to oxidative stress. Animal studies have shown
a beneficial effect of antioxidants (e.g., nicanartine, vi-
tamin E, and ALA) on retinopathy lesions in diabetic
animals, suggesting that oxidative stress may be involved
in the pathogenesis of DR (231–233). Data from some
studies have led researchers to hypothesize that oxidative
stress in persons with diabetes is involved in the patho-
genesis of not only DR but also DN, myocardial infarction,
and cognitive dysfunction (234–240). Oxidative stress in
those with diabetes has been attributed to hyperglycemia
with an increase in ROS through glucose auto-oxidation,
nonenzymatic protein glycation, decreased antioxidant
status, and reduced ROS removal (241).

Genetic factors
Studies have reported familial clustering of DR, and

this is compatible with the notion that genetic factors may
contribute to developing DR (242, 243). It is possible that
similarities in retinopathy severity within families are
related to how genes affect glycemia and BP (244, 245).
Control of these factors may influence the apparent effect
of genes on retinopathy. Also, because retinal micro-
aneurysms and blot hemorrhages are not specific to
diabetes, their presence (in the absence of signs of more
severe retinopathy) may lead to misclassification, resulting
in inconsistent associations of candidate genes with
early stages of DR compared with more severe stages of
DR (246).

DR has been associated with mitochondrial genes (69,
247), an AR gene (69, 248), endothelial NOS (249),
paraoxonase (an enzyme that prevents oxidation of LDL
cholesterol) (250), tumor necrosis factor-b NcoI gene
(251), «4 allele of the apolipoprotein E gene (252), in-
tercellular adhesion molecule-1 (253), a2b1 integrin gene
(involved with platelet function) (254), and cytokine
VEGF genes, but subsequent studies have not consistently
replicated these associations (255, 256). Two recent
studies, one a meta-analysis (257) and one from separate
studies in France and Denmark (258), failed to find de-
finitive evidence of the effects of genes associated with
serum levels of VEGF on DR.

Comorbidity and mortality
In the WESDR, the risk of developing systemic com-

plications (e.g., myocardial infarction, stroke, lower
extremity amputation, DN) was higher in those with
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proliferativeDR comparedwith thosewith no orminimal
retinopathy at baseline (Table 3) (259).

In those with T1DM, while adjusting for age and sex,
DR severity was associated with all-cause and ischemic
heart diseasemortality. In personswith T2DM,DR severity
was associated with all-cause and ischemic heart disease
mortality, as well as with stroke (260). After adjusting for
systemic factors, these associations remained only for all-
cause and stroke mortality in persons with T2DM. These
findings suggest that severe DR is an indicator for increased
risk of death, and may identify individuals who should be
under care for CVD. Other studies have reported this
finding (261–263). The higher risk of CVD in persons with
more severe DR may be partially due to the association of
severe retinopathy with CVD risk factors, such as hyper-
glycemia, hypertension, platelet aggregation, and chronic
renal disease.

Prevention of incidence or progression of DR
The primary method currently used to prevent or

retard the progression of DR is the judicious use of hy-
poglycemic agents. However, there is evidence that other
treatments may also be protective. As noted previously,
studies have reported that angiotensin-converting en-
zyme inhibitors targeting theRAS (100, 204, 207), aswell
as fenofibrate (206, 219), reduce the risk of progression
of DR in those who are normotensive, independent of
changes in BP and the lowering of uncontrolled BP (re-
gardless of the antihypertensive medication used).
However, RCTs of inhibitors of AR, PKC, and metal-
loproteinases have not shown efficacy in preventing
the incidence and progression of DR in persons with
diabetes (264).

Current treatment of severe DR
Standard treatment of proliferative DR is still pan-

retinal photocoagulation (265); for diabetic macular

edema it is focal laser treatment (266). RCTs have shown
the efficacy of intravitreally administered VEGF in-
hibitors (267) and steroids in treating proliferative DR
and diabetic macular edema (268). However, steroid
injections are associated with increased risk of high in-
traocular pressure (269), glaucoma (270), and cataract
surgery (271). There are times when retinopathy is so
severe that vitrectomy is needed to attempt to maintain or
restore vision after the nonresolution of a vitreous
hemorrhage and to decrease the risk of tractional retinal
detachment (272). Such treatment, although not without
its own risks, has been found (on average) to be successful
in maintaining visual function (273) and is still the best
alternative for late-stage proliferative disease.

Summary
Although there is strong evidence of the efficacy of

intensive glycemic and BP control in persons with di-
abetes, and therapeutic guidelines for these treatments
exist, recent findings from clinical trials suggest the each
person be treated individually, balancing microvascular
and macrovascular risk against the risk of hypoglycemia
and CVD mortality. The ACCORD trial clearly taught
us that there is no single recipe for the glycemic man-
agement of CVD risk in T2DM. The old principles still
hold: treat each patient as an individual and first do no
harm (274).

Microvascular Disease and the Brain

Introduction
Cognitive impairment is a common complication in

T2DM (275). Compared with the general population, the
risk of dementia is 1.5 to 2.5 times greater for adults with
T2DM (276–278). Recent data suggest that microvas-
cular pathologies play an important role in the associa-
tions between T2DM, Alzheimer’s disease (AD), and

Table 3. The Relative Risk for the Prevalence and 4-Year Incidence of Myocardial Infarction, Stroke, and
Amputation of Lower Extremities AssociatedWith Presence of Proliferative Diabetic Retinopathy, Adjusted for
Age in the Wisconsin Epidemiologic Study of Diabetic Retinopathy

Myocardial Infarction RR (95% CI) Stroke RR (95% CI)
Amputation of Lower
Extremity RR (95% CI)

T1DM
Prevalence 3.5 (1.5–7.9) 2.6 (0.7–9.7) 7.1 (2.6–19.7)
Incidence 4.5 (1.3–15.4) 1.6 (0.4–5.7) 6.0 (2.1–16.9)

T2DM, taking insulin
Prevalence 0.8 (0.4–1.4) 1.2 (0.6–2.4) 4.2 (2.3–7.9)
Incidence 1.2 (0.5–3.4) 2.9 (1.2–6.8) 3.4 (0.9–13.2)

T2DM, not taking insulin
Prevalence 0.3 (0.0–2.4) 2.9 (0.9–9.4) 5.2 (0.6–45.0)
Incidence 1.5 (0.2–12.5) 6.0 (1.1–32.6) 7.0 (0.8–64.4)

Source: Table 9 from Klein et al. (259).

Abbreviation: RR, relative risk.
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vascular subtypes of dementia, but little is known about
the microvascular mechanisms underlying these associ-
ations. There is increased interest in illuminating these
mechanisms to tailor and implement intervention strat-
egies aimed at preventing dementia, AD, and cognitive
decline in T2DM, as well as in aging populations with
T2DM risk factors.

Much work has focused on T2DM-related micro-
vascular complications in peripheral organ systems, in-
cluding the retina, kidney, and peripheral nerves.
Although the brain is seldom discussed as a site of mi-
crovascular complications in T2DM, diabetes-associated
vascular risk factors predispose individuals to both
macrovascular and microvascular complications in the
CNS (see Table 4). In particular, T2DM is an established
risk factor for cerebral small vessel disease, as well as
thrombo-embolic stroke (279). Cerebrovascular damage
in the form of small vessel disease is likely to be a major
factor in the association between T2DM and dementia
and could explain the increased risk of vascular dementia.
Furthermore, data from experimental studies also suggest
that metabolic disturbances associated with T2DM may
accelerate the development of AD-type pathologies
(280, 281).

Mechanisms for microvascular complications

Hyperinsulinemia and impaired insulin signaling
Insulin is known to have multiple functions in the CNS

(305). Although there is some controversy regarding
whether insulin is synthesized in the adult brain, circu-
lating insulin in the bloodstream is readily transported
across the blood-brain barrier (BBB) by a saturable
receptor-mediated process (306–308). Hyperinsulinemia
and insulin resistance may downregulate insulin trans-
port across the BBB, leading to reduced insulin levels in
the CNS (309). In select brain circuits (such as the hip-
pocampus), insulin-containing neurons, insulin re-
ceptors, and glucose transporter isoforms 4 and 8 are
colocalized (310, providing an infrastructure for insulin-
stimulated glucose uptake into neurons to support
cognitive function. In addition, other insulin-related
mechanisms have also been implicated in normal hippo-
campal functioning (311). Insulin receptors are located
in the synapses of both astrocytes and neurons, where in-
sulin signaling contributes to synaptogenesis and synaptic
remodeling (311). Insulin also modulates levels of neuro-
transmitters in the CNS (such as acetylcholine and nor-
epinephrine) that influence cognitive function (312, 313).

Table 4. Select Studies Linking Diabetes Complications With Microvascular Complications in the Brain
Through Shared Microvascular Mechanisms

Peripheral
Microvascular
Complication

Shared
Microvascular
Mechanisms

Brain Outcomes

Brain Atrophy WMH Infracts CMBs Cognitive

Retinopathy Arteriovenous
nicking

Cooper et al. (282) Qiu et al. (283) Qiu et al. (284)

Microhemorrhages Cooper et al. (282) Qiu et al. (283) Qiu et al. (284)
Venular dilation Ikram et al. (285) Cooper et al.;

Ikram et al.
(282, 285)

Qiu et al. (284)

Nephropathy Hypertension Reviewed Beauchet
et al. (286)

Verhaaren et al.;
King et al.
(287, 288)

Reviewed
Loitfelder
et al. (289)

Reviewed
Beauchet
et al. (286)

Creatinine Rajagopalan
et al. (290)

Reviewed Vogels
et al. (291)

Cystatin C Rajagopalan
et al. (290)

(292) Umemura
et al. (293)

Glomerular filtration
rate

Reviewed Vogels
et al. (291)

Kurella Tamura
et al. (294)

Islet amyloid
polypeptide

Jackson et al. (295)

Neuropathy Hyperglycemia Manschot et al.;
Launer et al.;
Ursache et al.
(296–298)

Manschot et al.
(298)

Crane et al. (299)

AGEs, RAGE Hudson et al.
(300)

Hudson
et al. (300)

Vitamin B12
deficiency

Tangney et al. (301) Feng et al.;
de Lau et al.;
Tangney et al.
(301–303)

Kealey et al. (304) Tangney
et al. (301)

Smith et al. (303)

Unexplored common features in humans include the following: pericyte loss, microvascular reactivity, AGEs, ROS, etc.
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Given the multifactorial role of insulin in the brain,
maintainingproper insulin homeostasis and insulin receptor
activity may be essential for proper brain function and
memory (310).

Chronic hyperinsulinemia is a key early factor in
the process leading to insulin resistance and T2DM
that may potentially mediate the relationships between
T2DM and proinflammatory states, microvascular
disease, and AD pathology. Whereas anti-inflammatory
effects are observed with low doses of insulin, long-
term hyperinsulinemia may exacerbate the inflam-
matory response and increase markers of oxidative
stress (314).

Intravenous infusions of insulin to levels associated with
insulin resistance increased the levels of F2-isopostanes
and cytokines in cerebrospinal fluid (315). Hyper-
insulinemia may also potentiate AD pathology [e.g.,
amyloid b (Ab) plaques] by causing increased pro-
duction but reduced extracellular degradation of Ab,
impaired insulin signaling, oxidative stress, inflamma-
tory mechanisms, and coupling of neuronal components
by AGEs (316). The amyloid precursor protein produces
Ab (a peptide of 36 to 43 amino acids). Although best
known as a main component of amyloid plaques in as-
sociation with AD (e.g., Ab42), there is evidence that Ab
is a highly multifunctional peptide with significant
nonpathological activity, including protecting against
metal-induced ROS, modifying cholesterol transport,
and potentially acting as a transcription factor (317).
Hyperinsulinemia, at levels associated with insulin re-
sistance, can elevate inflammatory markers and Ab42 in
the periphery and the CNS, which may increase the risk
of AD (305). Interestingly, AD pathology may have
direct effects on insulin receptors and their signaling.
Soluble Ab can disrupt brain insulin signaling by
binding to the insulin receptor (318), suggesting in-
teractions between T2DM, glucose metabolism in the
brain, and AD pathology.

Ab aggregation also occurs outside the CNS and often
is associated with increased cell death (319). Ab deposits
also occur from the aggregation of the polypeptide
hormone islet amyloid polypeptide (IAPP). IAPP aggre-
gates into Ab deposits and may induce the depletion of
islet b-cells in T2DM (319). Ab deposits are the most
typical morphological islet lesion in T2DM. A recent
study reported mixed IAPP and Ab deposits in the brains
of patients with T2DM and vascular dementia or AD
(295). The study found IAPP oligomers and plaques in the
temporal lobe gray matter, blood vessels, and peri-
vascular spaces in T2DM patients, but not controls. The
study also detected IAPP deposition in blood vessels and
brain parenchyma of patients with late-onset ADwithout
clinically apparent T2DM.

Hyperglycemia
In many prediabetic adults, the degree of insulin re-

sistance increases as insulin secretion by pancreatic cells
declines, resulting in hyperglycemia of sufficient magni-
tude to warrant a T2DM diagnosis. Extracellular and
intracellular hyperglycemia are two general patho-
physiologic mechanisms by which hyperglycemia leads
to irreversible tissue damage, even in prediabetic states
(320). Chronic hyperglycemia (both cellular and ex-
tracellular) leads to glycation end product formation
(discussed later). This may have particular effects on
the endothelial cell where intercellular glucose appears
to be a significant driver of microvascular dysfunction
(see Biochemical Pathways of Microvascular Injury). It
also contributes to heart disease, microvascular com-
plications, and intracellular hyperglycemia, and may
increase the risk of developing dementia. Among par-
ticipants without T2DM (random glucose,120 mg/dL),
higher normal plasma glucose levels are associated
with an increased risk of incident dementia (299).
Individuals with T2DM also had a similar relation-
ship at glucose levels .170 mg/dL (299). High glu-
cose levels may contribute to an increased risk of
dementia through several potential mechanisms, in-
cluding acute and chronic hyperglycemia and insulin
resistance (321) and increased microvascular disease of
the CNS (322–325).

Extracellular hyperglycemia can lead to intracellular
hyperglycemia through the increased flux of glucose
freely across the cell membrane of many cell types. Excess
intracellular glucose not used for energy will enter the
polyol pathway, leading to decreased levels of NADPH
(320). NADPH plays a central role in the production of
NO andGSH. NO is an important vasodilator; therefore,
reductions in NADPH may limit NO production with
direct pathologic effects on vasodilation throughout the
body, particularly in the kidneys and brain. NADPH also
prevents ROS from accumulating and damaging cells,
and thus reductions in NADPH can also increase oxi-
dative stress (326).

Oxidative stress
Oxidative stress in the cerebral parenchyma and blood

vessels plays a critical role in the processes associatedwith
cerebrovascular dysfunction, with NADPH oxidase
being a major source of ROS (327–329). ROS can alter
vascular regulation through processes involving the
formation of peroxynitrite from the reaction betweenNO
and superoxide radical. Consequently, oxidative stress
and ROS resulting from mitochondrial dysfunction have
been strongly implicated in brain aging, AD, and vascular
dementia (326, 330). Overall, several factors related to
hyperglycemia may contribute to a chronic hypoperfusive
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state leading to microscopic tissue damage and regional
specific syndromes (331).

Advanced glycation end products
Another direct result of high circulating levels of un-

bound glucose is the formation of AGEs. AGEs accu-
mulate with age in the human brain, and may be one
possible mechanism linking T2DM to cognitive impair-
ment (332). One study found AGEs in hallmark neuro-
pathologic features (e.g., neurofibrillary tangles and Ab
plaques) in patients with AD (333). Older adults with
cerebrovascular disease have higher AGEs in cortical
neurons and cerebral vessels, which are related to the
severity of cognitive impairment (334). RAGEmost likely
plays an important role in the brain with respect to in-
flammation (335) and AD pathology. RAGE is expressed
in astrocytes, microglia, and neurons, and is also highly
expressed in the endothelial cells within the brain (336).
RAGE expression in the endothelium has important
consequences for vascular inflammation and BBB in-
tegrity (337). BBB integrity is an essential factor in Ab
equilibrium in the brain, which is regulated through LDL
receptor-related protein 1 and RAGE. The RAGE protein
mediates the influx, and the LDL receptor-related protein
1 mediates the efflux of amyloid protein through the BBB
(336). Patients with T2DMnot only produce endogenous
AGEs at a higher rate, but they have an upregulation of
RAGE expression in the brain (338). Increased RAGE
expression in the T2DM brain might create an imbalance
between the rates of influx and efflux of Ab through the
BBB, promoting uptake of Ab into the brain and sub-
sequent deposition of Ab plaques (339).

Summary of mechanisms
The characteristic metabolic deregulation of T2DM

promotes changes in insulin signaling, glucose uptake,
ROS formation, and inflammation in the microvascula-
ture that affect BBB integrity. In the brain, hyper-
insulinemia promotes insulin resistance and reduces
insulin signaling, which is essential to glucose uptake,
amyloid regulation, and vascular function. T2DM-
associated hyperglycemia leads to the formation of
proinflammatory AGEs, which increase RAGE expres-
sion in the endothelium and brain. RAGE expression is
thought to play a crucial role in BBB integrity through
regulating inflammation and the flux of Ab across the
BBB. These factors most likely play important roles in the
development of microvascular brain complications and
AD pathology seen in T2DM. Considerable progress has
been made in imaging microvascular complications and
Ab pathology in living humans, which has enabled
a better characterization of microvascular disease in
the brain.

Assessment of brain complications in T2DM
Neuroimaging is currently the best way to examine the

effects of microvascular disease and other brain abnor-
malities on the human brain in vivo. Neuroimaging
techniques aimed at studying microstructural cerebral
small vessel disease are the most common. More recent
advances enable the imaging and quantification of mi-
crostructural and functional abnormalities of the brain,
including regional cerebral blood flow (CBF) and func-
tional activation. Recent concerted efforts to standardize
the study of small vessel disease have resulted in a po-
sition paper from the Standards for Reporting Vascular
Changes on nEuroimaging (340). This paper sets the
groundwork for the systematic evaluation of brain
structure and function necessary for research using in
vivo brain imaging.

Brain atrophy
Longitudinal observational cohorts of brain aging

in the general population have shown that brain
volume declines as people get older (341). After ad-
olescence, the total brain volume tends to slowly
decrease with age until the fifth to sixth decade of life
when volume loss accelerates (342, 343). The average
rate of decline is estimated to between 0% and 4%/
year (343, 344). It is generally accepted that atrophy is
not consistent across brain regions and tissue com-
partments (343, 345, 346). Brain atrophy is thought
to be a result of both macrovascular and microvas-
cular abnormalities in the brain.

T2DM is associated with greater total brain atrophy
(347, 348), with possible preferential gray matter volume
loss in cerebrum (348), putamen (348), medial temporal
(349–351), and frontal (350, 352) regions. The longi-
tudinal decline in total cerebral brain volume is asso-
ciated with increasing age, T2DM, hypertension, current
smoking, and evidence of cerebral small vessel disease
(353). Cerebellar atrophy shares similar risk factors with
longitudinal cerebral atrophy, including T2DM, higher
serum glucose, and evidence of cerebral small vessel
disease (353), but appears to be unrelated to hypertension
and smoking or heavy drinking (344, 353). Although
cerebral and cerebellar volumes do not entirely overlap,
T2DM is the strongest common factor related to smaller
volumes in both parts of the brain (353). T2DM is as-
sociated with enlargement of the ventricles and higher
white matter hyperintensities (WMHs) (354). Individuals
with T2DM also had greater longitudinal changes in
these measures over 4 years of follow-up, resulting in
smaller brain volumes and increases in WMHs and
ventricle enlargement (354).

Recently, studies have directly assessed the relation-
ship between insulin sensitivity and regional brain volume
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differences.Higher basal insulin resistance,measured by the
homeostatic assessment of insulin resistance,was associated
with less graymatter in hippocampus andprefrontal regions
of the brain among adolescents and young adults without
T2DM (297). In cohorts of late middle-aged adults,
greater insulin resistance was associated with both in-
creased atrophy in regions affected by early AD (355) and
worse cognitive performance (356). In longitudinal
studies, higher fasting insulin showed small but signifi-
cant correlations with gray matter atrophy in orbito-
frontal cortex and hippocampus (357). Some studies,
however, have not found a relationship between insulin
resistance and hippocampus volume in late middle-aged
(358) or elderly (359) adults.

The pathological basis for this T2DM-associated
global and regional brain atrophy still needs to be
resolved. It is likely that T2DM-associated factors,
including glucose homeostasis and insulin resistance,
play central roles. Yet, the results from the ACCORD-
Memory in Diabetes clinical trial provide an important
caveat when considering the effect of glucose control
on brain structure (296). They showed that intensive
glycemic control targeting HbA1c to ,6.0%, com-
pared with standard strategy targeting HbA1c to 7.0%
to 7.9%, resulted in slightly greater total brain volume,
but did not enhance cognition. Intensive therapy was
also associated with abnormal white matter and in-
creased mortality in the intensive therapy arm. The
findings from the ACCORD-Memory in Diabetes trial
thus do not support intensive therapy to reduce the
adverse effects of T2DM on the brain (296). However,
these relationships are likely to be mediated by more
detailed evidence of cerebrovascular disease and brain

integrity. Atrophy is a relatively crude tool when used
to assess microvascular complications in the brain.

Alterations in cerebral blood flow and
glucose utilization

Clinicians can measure changes in innate brain func-
tion relating to cerebrovascular function and glucose
utilization by positron emission tomography (PET) using
the fludeoxyglucose F18 ligand-PET (FDG-PET) and by
magnetic resonance imaging (MRI) through measures of
CBF and functional connectivity known as functional MRI
(Fig. 6). FDG-PET provides insight into regional glucose
metabolism in the brain and changes in regional CBF.

Changes in CBF and glucose utilization on FDG-PET
are thought to reflect synaptic dysfunction among re-
gional brain networks. AD is characterized by a pattern
of reduced CBF and cerebral glucose hypometabolism.
Reductions in FDG-PET are associated with increased
AD risk and can be observed years before dementia onset
(360, 361). Reductions in FDG-PET and CBF are also
present in T2DM. Among individuals with prediabetes
andT2DM, greater insulin resistance was associatedwith
an AD-like pattern of reduced cerebral glucose metabolic
rate in frontal, parietotemporal, and cingulate regions of
the brain (362). Among cognitively normal individuals
with a family history of AD, higher fasting glucose levels
were significantly associated with lower cerebral glucose
metabolic rate in areas differentially affected by AD
(363). FDG-PET imaging studies suggest that hypo-
metabolism of glucose in the brains of individuals with
T2DM and those who go on to develop AD may be a
product of a generalized metabolic dysregulation of
glucose. A recent study showed that impaired glucose

Figure 6. Neuroimaging measures related to cerebral small vessel disease and concomitant pathologies.
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tolerance measured in midlife was associated with lon-
gitudinal changes in regional CBF (measured using [15]
O-water PET scans) (364).

Although MRI-defined total CBF is associated with
cognitive functioning, there appears to be no relative
differences in total CBF between T2DM patients and
controls (365). T2DM-related alterations in CBF may be
regionally specific (366). In T2DM, total CBF is asso-
ciated with impaired cognition and total brain volume in
cross-sectional analyses, but does not appear to predict
changes in cognition or brain volumes over time (367).
Similar patterns have been reported with resting state
functional MRIs for insulin-resistant adults (368). In-
dividuals with T2DM have reduced functional connec-
tivity in brain networks related to AD compared with
control subjects, which was associated with insulin re-
sistance in selected brain regions, even when there were
no observed between-group differences in brain structure
or cognition. Taken together, PET and MRI studies of
CBF suggest early alterations occur throughout the brain
in areas affected by AD, and these reductions in CBF
colocalize with areas of reduced glucose utilization in
the brain.

Microvascular ischemia
Ischemia due to microvascular disease manifests itself

in several ways in T2DM, including WMHs, subtle al-
terations in white matter integrity, and lacunar or
microinfarction (Fig. 6). White matter abnormalities are
frequently detected as hyperintense regions on T2-
weighted MRIs of the brain in an age-dependent fash-
ion, especially in adults older than 60 years (369), and
these abnormalities may be associated with increased
relative risk of stroke and the presence of retinal mi-
crovascular abnormalities (369). Studies of WMH in
T2DM show no consistent association. Discrepancies
from early studies were attributed to methodological
issues, including the use of crude visual rating scales
(370). Studies using semiquantitative rating scales find
more consistent relationships between WMH and
T2DM, HbA1c, and diabetes duration (371). However,
although some more recent studies using quantitative
techniques to measure WMH volume show greater
WMH volumes in T2DM compared with controls (372),
others do not (348). Diabetes duration, HbA1c and in-
sulin levels, BP, and the presence of infarcts have all been
linked to WMH severity (371, 373).

WMH can be considered a downstream event of mi-
croscopic white matter abnormalities that exist before
they can be visualized on T2-weighted MRI (374, 375).
MRI can quantify white matter integrity in several ways.
White matter swelling related to fluid influx can be vi-
sualized by magnetization transfer imaging (MTI). MTI

is a quantitative MRI technique that detects subtle tissue
differences that occur with brain aging, beyond the ac-
cumulation of WMH and brain atrophy. MTI correlates
with macromolecular attenuation, and therefore is be-
lieved to largely reflect myelin content. Hypertension and
T2DM are associated with abnormalities in MTI within
the brain (376). Diffusion tensor imaging (DTI) is another
form of MRI used to assess the microstructural integrity
of the brain. DTI measures the diffusion (movement) of
water molecules within each voxel. For example, water
molecules restricted by dense membranes move less than
unrestricted molecules. DTI is used to assess neuronal
density in the gray matter. DTI enables the tractography
of white matter tracts, which cannot be resolved using
traditional MRI techniques. Furthermore, DTI enables
the quantification of white matter integrity within the
tracts in axonal and radial directions. Fractional an-
isotropy is a composite of the axonal and radial diffu-
sivity of water molecules perpendicular to (radial) and
along (axonal) the individual whitematter tract. In simple
terms, proper integrity of white matter tracts should
result in high axonal diffusivity and high FAs along the
tract. Axonal breaks and rarefication of the surrounding
myelin result in lower diffusion of water molecules in the
axonal plane and more diffusion in the radial plane,
resulting in lower FAs. Several studies using DTI show
white matter integrity may be compromised in children
with T1DM (377, 378) and adults with T2DM (348, 379,
380). T2DM is associated with lower FAs in the total
white matter, greater bilateral mean diffusivity for the
hippocampus and dostolateral prefrontal cortex, and
greater lateralized mean diffusivity for the posterior
cingulate and right putamen (348). Studies reporting
differences in white matter microstructure between
controls and T2DM patients do not report significant
differences in WMH derived by conventional MRI
scans. The associations between T2DM and lower FAs
along select white matter tracts extend to other T2DM-
related conditions, including metabolic syndrome (381)
and depression (382).

Lacunar infarction is another form of microvascular
brain disease that produces a round or ovoid, subcortical,
fluid-filled cavity. This cavity is visible by brain computed
tomography or MRI (signal similar to cerebrospinal
fluid) and is between 3 and 15mm in diameter, consistent
with a previous acute small subcortical infarct or hem-
orrhage in the territory of one perforating arteriole (340).
It is estimated that lacunar infarcts account for 25%of all
ischemic strokes, with an annual incidence of ;15 per
100,000 people (383). A meta-analysis of studies with
brain MRIs in patients with T2DM showed that there
was a significant association between T2DM and lacunar
infarcts. Compared with the general population, the odds
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of having lacunar infarction are 1.3 times higher among
individuals with T2DM and 2.2 times higher for those
with concomitant vascular disease (347). T2DMmodifies
the risk of short-term mortality and stroke recurrence
among individuals with lacunar infarction. In patients
with recent lacunar stroke, T2DM independently pre-
dicted ischemic stroke recurrence (384) and short-term
and 5-year mortality (383).

Recent data suggest that T2DMmay be more likely to
contribute to the formation of small lacunes (385). Re-
searchers have hypothesized that small lacunes (#7 mm)
probably have a lipohyalinotic etiology, and that larger
lacunes (8 to 20 mm) result from microatheroma. The
presence of lacunes #7 mm was significantly associated
with age, black ethnicity, hypertension, ever-smoking,
T2DM, and HbA1c. The same risk factors predicted
infarcts with lacunes ,3 mm. Interestingly, lacunes 8 to
20 mm in size had a risk factor profile more indicative of
atherosclerosis that was not associated with T2DM.
Taken together, factors related to T2DM (such as
HbA1c) may be more likely to contribute to the for-
mation of smaller lacunes (even those ,3 mm) than the
formation of larger lacunes. Further research focused on
cardiometabolic risk factors contributing to lacunar in-
farction size will elucidate the mechanisms that athero-
sclerosis and T2DM share.

Even smaller, cerebral microinfarcts (CMIs) are
attracting increasing attention in microvascular brain
research. They are considered to be the single most
widespread form of brain infarction and thus a major
component of the causal pathway betweenmicrovascular
disease and cognitive dysfunction (386, 387). Autopsies
reveal CMIs in ;43% of patients with AD, 62% of
patients with vascular dementia, and 24% of non-
demented elderly subjects (367). CMIs are typically de-
fined as sharply delineated microscopic ischemic lesions
accompanied by cellular death or tissue necrosis, often
associated with gliosis and cavitation (388). CMIs can
occur in both the white matter and subcortical regions of
the brain, presumably more so in watershed areas (367).
Because of their small sizes (ranging from 50 mm to a few
mm), CMIs escape detection by regular clinical MRI
protocols. The introduction of high-field-strength 7.0
TeslaMRI, with its high-resolution imaging and isotropic
voxel sizes in the submillimeter range, permits clinicians
to see CMIs in vivo (389).

In autopsy studies, CMIs were associated with in-
creased measures of neuroinflammation, such as an el-
evated interleukin-6 concentration in the cortex. Of
specific interest, in subjects with both T2DM and de-
mentia, researchers observed different patterns between
individuals who have or have not received medical di-
abetic therapy. Treated diabetic patients with dementia

had the highest number of CMIs in the striatum, thala-
mus, and deep white matter (390). The association be-
tween cerebral injury and diabetes treatment in T2DM
patients with dementia could have etiologic or thera-
peutic implications.

Nonischemic microvascular complications
Microvascular injury can alsomanifest as nonischemic

pathology, such as cerebral microbleeds (CMBs), en-
larged perivascular spaces (EPVS), evidence of BBB
breakdown, and cerebral amyloid deposition. Human
studies on aging and neurodegeneration currently use
ever-developing technologies for measuring these lesions.

CMBs are visible in MRIs (391) (Fig. 6). CMBs
commonly occur in patients with stroke, as well as in the
general elderly population. The prevalence of CMBs in
community-dwelling older adults is as high as 11.1% to
23.5% (392, 393). The presence of CMBs predicts the
development of new CMBs (394). Some controversy
remains as to whether T2DM predisposes individuals to
CMBs (395). However, results from a meta-analysis
showed that both T2DM and hypertension were asso-
ciated with having more than a twofold increase in the
odds of having CMBs (396). CMBs appear to colocalize
with Ab deposits in brain tissue samples from non-
demented older adults, suggesting a shared etiology
(397). PET imaging that uses amyloid-specific ligands
(e.g., Pittsburgh compound B-PET) has openednew av-
enues to study amyloid deposits in the brain in vivo. One
small study measured amyloid PET in AD patients with
and without T2DM and found that the amyloid accu-
mulation in AD patients was greater than in controls, but
did not differ by T2DM status (398). A recent study using
Pittsburgh compound B-PET in a convenience sample of
older adults found no association between in vivo brain
Ab burden and serial measures of glucose intolerance or
insulin resistance (399).

EPVS (also called Virchow-Robin spaces) are visible
on T2-weighted MRIs and thought to represent the ex-
vacuo dilatation that is secondary to cerebral tissue
shrinkage after demyelination and axonal loss (400, 401)
(Fig. 6). Once thought to be a normal phenomenon of
aging, more recent studies show EPVS are associatedwith
atherosclerosis (402), dementia, and other markers of
microvascular disease (403, 404). EPVS are found in
young patients with T1DM (405) and have yet to be
examined in T2DM. EPVS may be indicative of peri-
vascular cells (pericytes and vascular smooth muscle
cells), which are important regulators of vascular for-
mation, stabilization, remodeling, and function (406).
Pericytes are integral components of the BBB and have a
dramatic impact on microvascular integrity. They sur-
round capillaries, contain contractile proteins, and are

26 Barrett et al Diabetic Microvascular Disease J Clin Endocrinol Metab, December 2017, 102(12):1–68

Downloaded from https://academic.oup.com/jcem/article-abstract/doi/10.1210/jc.2017-01922/4604942
by White and Case LLP user
on 13 November 2017 http://guide.medlive.cn/

http://guide.medlive.cn/
http://guide.medlive.cn/


thought to regulate blood flow (407) and permeability
(408). Notably, a loss of brain pericytes and the resulting
BBB breakdown have been shown to impair CNS function
through leakage and by depositing several potentially
vasculotoxic and neurotoxic blood-derived macromole-
cules, including fibrin, thrombin, plasmin, and hemoglobin-
derived hemosiderin, which causes accumulation of iron
and ROS (409). Research suggests that the loss of pericytes
in the brain parallels pericyte loss in DR, leading to the
breakdown of the BBB (410). There are currently no
neuroimaging techniques that enable us to see pericytes
directly. Developing novelneuroimaging techniques, such as
PET ligands specific for pericytes, may elucidate the in vivo
role of pericyte loss in neurodegeneration and diabetes.

The cerebral microvascular endothelial cells, capillary
BM, astrocyte endfeet, and pericytes are the structural
components that comprise the BBB. The BBB regulates
the normal neuronal and glial cell environment (411) by
regulating the passage of circulating elements from blood
into the brain. We are becoming increasingly more aware
of changes in BBB integrity associated with aging and
microvascular disease. Permeability of the BBB is an
important aspect of microvascular complications in
the brain and can be imaged in vivo using a MRI with
intravenous gadolinium contrast enhancement (412).
Postcontrast enhancement of brain parenchyma and in-
creased signal intensity in the cerebrospinal fluid are pre-
sumed indicators of increased BBB permeability, andwe see
these changes in patients with T2DM (413). Postcontrast
signal intensity increased more in the diabetic group than
controls after administering gadolinium-diethylene triamine
penta-acetic acid, particularly in the basal ganglia, an area
known to be particularly vulnerable to cerebrovascular
disease. The effects of T2DMon the BBBmay contribute to
increased risk of AD. Constituents of the endothelium,
including RAGE, are important risk factors to consider
when investigating T2DM-related BBB breakdown. Several
novel neuroimaging techniques, including super para-
magnetic nanoparticles and PET imaging ligands designed
to image theBBBand its disruption,will provide useful tools
for investigating BBB breakdown in the future.

Summary
Adults with T2DM have an increased risk of dementia

as they age. T2DM and its associated factors predispose
individuals to both microvascular and macrovascular
complications throughout the body and brain. Recent
neuroimaging studies show that patients with T2DM go
on to develop structural and functional brain abnor-
malities similar to older adults with dementia. Many of
the strongest neuroimaging markers of brain abnor-
malities seen in T2DM are related to microvascular
disease. Furthermore, individuals who have evidence of

metabolic deregulation (hyperglycemia and insulin re-
sistance), but do not have T2DM, show similar structural
and functional brain abnormalities to those with frank
T2DM. There is evidence that individuals with T2DM-
associated microvascular complications in the periphery
have an elevated risk of havingmicrovascular complications
in the brain. Future research will determine whether the
putative causal factors resulting in microvascular compli-
cations in the body (e.g., insulin resistance, hypertension,
oxidative stress, and AGEs) mediate the observed associ-
ations between T2DM and brain microvascular abnor-
malities. Understanding the causes of microvascular disease
in the brain associated with T2DM will provide targets for
preventing cognitive decline and dementia in patients
with T2DM.

TheMicrovasculture inSkeletal andCardiac
Muscle, Adipose, and Skin

Introduction
Diabetic microvascular disease is usually associated

with eye, nerve, and renal injury. However, diabetes is a
pervasive microvascular disease with functional conse-
quences in tissues outside of those commonly associated
with the disease. In this section, we review microvascular
changes in skeletal and cardiac muscle, adipose, and skin,
highlighting structural and functional changes that result
from chronic hyperglycemia and from other factors that
accompany diabetes. The retinal, renal, and neural pa-
thology that accompanies diabetes arises in each case
from disease/dysfunction of a very small mass of vessels in
critical areas. However, for skeletal and cardiac muscle,
adipose, and skin, we are dealing with a larger set of
microvascular target vessels that when dysfunctional can
impact general metabolic function.

Skeletal muscle microvasculature: structural and
functional changes that accompany diabetes and
insulin resistance

A study using electron-microscopic methods to ex-
amine pathologic changes in tissues from patients with
diabetes reported that the BM of the microvasculature
within skeletal muscle was thicker in diabetic than in
healthy control subjects (414). The study also suggested
that this change might occur early after the onset of di-
abetes or even precede frank hyperglycemia (414).
However, subsequent work suggested that BM thicken-
ing correlated well with diabetes duration and glycemic
control (415). Some initial confusionmay have arisen as a
result of different fixation methodologies for preparing
tissues for electron microscopy (416), as well as differ-
ences related to which muscle group was biopsied (vastus
lateralis, gastrocnemius, or neck muscles) (417, 418).
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Most experts now agree that the degree and duration of
hyperglycemia appear to be important predictors of BM
thickness (415). Research also indicates that, despite
increased thickness of the BM, the peripheral vasculature
in individuals with established diabetes appeared to be
more leaky compared with nondiabetic controls. Studies
most commonly defined leaky as the escape of radiola-
beled albumin from the systemic circulation (419, 420).
Although these studies used albumin as the tracer, other
plasma proteins and lipoproteins also exit plasma at an
accelerated rate. In the wall of larger arteries, this leakage
from the vasa vasorum may contribute to the increased
atherosclerosis that accompanies diabetes.

Over several decades, more has been learned about the
composition of the BM (421) and how diabetes affects it.
The principal proteins include type 4 collagen, laminin,
perlecan, and nidogen/entactin. These proteins include
several different isoforms, and the relative abundance and
combinations of specific isoforms differ in various vas-
cular beds. There are also a large number of other pro-
teins present in smaller quantities. The biochemical
composition of the BM in diabetes suggested that accu-
mulation of glycosylated and cross-linked proteins con-
tributed to the expanded membrane structure and
disordered function (422). The nonenzymatic glycosyl-
ation of these proteins (like that of intracellular proteins),
as well as cross-linking of the BM structural proteins by
reactive carbonyl compounds like methylglyoxal (see
Biochemical Pathways of Microvascular Injury), can
affect endothelial cell/ECM interactions (422).

The pericyte is another important support component
of the muscle microvasculature. As described elsewhere,
pericyte loss is an early finding in the genesis of DR. In the
kidney, changes in mesangial cell function (the glomer-
ular cognate of the pericyte) contribute to the glomerular
pathology of diabetes. Within skeletal muscle and many
other tissues, pericytes and smooth muscle cells line the
vessels down to the level of the capillary. Although
originally thought to play principally a support and
contractile function, it appears more likely that these cells
may play a more dynamic role in regulating multiple
functional aspects of the microvasculature (423). For
example, although pericytes appear to play an important
role in angiogenesis within the microvasculature, they
also participate in the formation of the BM that envelops
the endothelium. Within skeletal muscle, diabetes de-
creases the density of pericytes (417, 424). It is not certain
whether this is one of the factors leading to muscle
capillary rarefaction that is seen in diabetes (425), as well
as in persons with hypertension or with simple obesity
(426). It is of interest that insulin resistance is a common
trait among these latter disorders, and impaired insulin
action on muscle vascular elements may underlie this loss

of capillary numbers. This has also been nicely demon-
strated in animal models of obesity and insulin resistance
in which decreased NO availability was implicated as
potentially causative (427). In addition to changes in
skeletal muscle capillary numbers, diabetes is associated
with changes in the capillary architecture, which affect
the perfusion pattern within the muscle (428).

One study reported that muscle-specific VEGF-
deficient mice have capillary rarefaction in both skeletal
and cardiac muscle, and this is accompanied by decreased
insulin action on skeletal muscle glucose uptake during a
euglycemic clamp (429). Glucose uptake in response to
insulin was normal when these muscles were excised and
studied in vitro, suggesting that the capillary rarefaction
was responsible for at least a significant fraction of the
metabolic insulin resistance observed. Likewise, a second
study reported that mice deficient in insulin receptor
substrate 2, specifically in the endothelium, have in vivo
metabolic insulin resistance during the euglycemic clamp
(430). This appears to be secondary to impaired insulin
signaling to activate NOS and increase NO production.
Interestingly, the study also reported that endothelial cells
from control mice placed on a high-fat diet demonstrated
decreased IRS-2 protein content, as well as impaired
insulin-mediated glucose disposal. The study did not
examine microvascular rarefaction. However, it did
report that in control mice, insulin increased capillary
recruitment (a process by which insulin, exercise, and
other factors increase the fraction of capillaries within
muscle that are perfused at any point in time); this did
not occur in high fat–fed or endothelial cell–specific
IRS-2 knockout mice.

These last two studies begin to probe the relationship
between microvascular perfusion, capillary density,
and metabolic function in muscle. Preceding that work,
there are several decades of publications indicating a
clear relationship between insulin’s metabolic actions
in muscle and insulin’s action on vasculatures (both large
conduit vessels, resistance vessels, and the microvascu-
lature) that supply skeletal muscle. By the mid-1990s, it
was reasonably established that changes in insulin con-
centrations (using the insulin clamp technique) could
modify total blood flow to muscle, and that states of
insulin resistance, including obesity (431), T1DM (432),
and T2DM (433), blunted this effect. Presumably, this
effect was principally mediated by actions on resistance
arterioles, which (along with the microvasculature) reg-
ulate total blood flow tomuscle.With the development of
several methods to specifically measure muscle micro-
vascular blood flow (434, 435) and the distribution
of blood flow within the muscle, it became apparent
that insulin also significantly enhanced the recruit-
ment of capillaries that were relatively less perfused or
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unperfused within resting skeletal muscle. Both in-
sulin’s effect on resistance arterioles and insulin’s effect
on the smaller fourth- or fifth-order arterioles that
regulate muscle flow distribution require intact sig-
naling to NOS (436, 437). Insulin’s microvascular effect
(like its effect on resistance arterioles) was impaired
in states of insulin resistance (including diabetes) and
correlated strongly with insulin’s metabolic effects within
skeletal muscle in both experimental animals (438–440)
and humans (441–445).

Even very modest exercise recruits capillaries within
human skeletal muscle (446), and the effect appears
stronger than that of insulin. Furthermore, the effect of
exercise persists unabated in insulin-resistant states. The
fact that expanding capillary surface enhances insulin
(and nutrient) delivery to muscle (67) may, in part, ex-
plain the insulin-sensitizing effect of exercise.

Two aspects related to impaired skeletal muscle mi-
crovascular insulin action and its metabolic conse-
quences are of particular interest. First, although this
impairment is quite evident in individuals with diabetes,
it is also apparent in other states of insulin resistance,
like metabolic syndrome or simple obesity. As such, this
microvascular dysfunction affects even a larger segment
of the general population. This is of significant concern
because both obesity alone and metabolic syndrome
increase CVD risk (447). Second, clearly different
mechanisms are most likely involved. Diabetes micro-
vascular injury appears to be provoked (in many tissues)
by excess glucose metabolism by the endothelial cell,
which results in enhanced glycolytic activity, greater
AGE formation, mitochondrial ROS production, and
increased PKC activity (64). Because endothelial cell
glucose metabolism occurs in an insulin-independent
fashion, but is proportional to the degree of glycemia,
it clearly involves a separate mechanism from that seen
in normo-glycemic insulin-resistant obese or metabolic
syndrome subjects. The latter may involve nutrient
overload by FAs or other nutrients (448), although the
relationship between obesity (or even T2DM) and in-
creases in circulating concentrations of nonesterified
FAs is not without controversy (449).

The myocardial microcirculation in diabetes
The coronary microvasculature plays a dynamic role

in the regulation of coronary blood flow to meet the
oxygen and nutrient demands of the myocardium. Be-
cause the heart’s microvascular bed provides endothelial
surface area to facilitate the delivery of oxygen, nutrients,
and hormones and the removal ofmetabolic end products
from the myocardium, changes in the cardiac micro-
vascular blood volume and flow could profoundly affect
myocardial metabolism, function, and health.

The coronary circulation is composed of the arterial
(epicardial coronary arteries down to 200 mm arterioles),
microcirculatory (arterioles ,200 mm, capillaries, and
small venules ,200 mm), and the venous (200 mm ve-
nules to coronary sinus) compartments with a total blood
volume of ;12 mL/100 g cardiac muscle, which is dis-
tributed near evenly among these three compartments
(450, 451). Although most of the arterial and venous
blood volumes are located on the epicardial surface of the
heart, themicrovascular compartment is exclusively located
within the myocardium and constitutes ;90% of the
myocardial blood volume (450). Compared with other
insulin-sensitive tissues (e.g., skeletal muscle and adipose
tissue), myocardium has a much larger endothelial surface
area (per gram of tissue). Within the myocardium, endo-
thelial cells outnumber cardiomyocytes by three to one, and
each mm2 myocardium contains 3000 to 4000 capillaries,
which run parallel to cardiomyocytes (451, 452). At rest,
only ;50% of myocardial capillaries are perfused (453).
When myocardial oxygen demand increases, myocar-
dial blood flow velocity and/or volume increase to
meet demand.

In addition to providing surface area for endothelial
exchange, the myocardial microvasculature also actively
regulates capillary hydrostatic pressure, which is critical
for maintaining cellular homeostasis and health (454),
resulting in a constant coronary blood flow over a wide
range of coronary driving pressures (;45 to 120mmHg)
(451). The largest drop in pressure from the mean aortic
pressure of ;90 mm Hg to the capillary hydrostatic
pressure of ;30 mm Hg occurs in the arterioles smaller
than 100 mm in diameter. Tone in these vessels responds
to autonomic control and to local metabolites (455).
Together, the arterioles confer;60%of total myocardial
vascular resistance, whereas capillaries account for
;25% and venules ;15% (451, 453, 456). Unlike the
arterioles that regulatemyocardial blood flow, resistance,
and volume by vasodilation or vasoconstriction, capil-
laries (which lack a smooth muscle component) do so via
their recruitment or decruitment driven by arteriolar
tone (453).

Many physiological factors regulate coronary blood
flow, including catecholamines, adenosine, exercise, in-
sulin, and glucagon-like peptide 1 (GLP-1). Adenosine
is a potent vasodilator, which has been widely used
clinically to assess coronary blood flow reserve. Exercise
is probably the most important and potent physiological
stimulus to increase myocardial blood flow. The increase
in oxygen demand of the left ventricle during exercise is
mainly met by augmenting coronary perfusion via cap-
illary recruitment and the dilatation of coronary micro-
vessels, as oxygen extraction is nearly maximal at rest
(70% to 80%) (457). Insulin also increases coronary
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blood flow in humans (458–464), suggesting a vasodilatory
action on coronary vasculature. Studies using myocardial
contrast echocardiography (a noninvasive technology
that employs perfluorocarbon gas–containing micro-
bubbles to assess in vivo perfusion of the cardiac mi-
crovasculature) (465–467) have shown that insulin
potently increases cardiac microvascular perfusion in
healthy humans (443, 468, 469). This finding extends a
prior report that mixed meal feeding significantly in-
creased cardiac microvascular perfusion in healthy but
not in T2DM humans (470). The postprandial increase
in cardiac microvascular perfusion is most likely
multifactorial. In addition to stimulating insulin secre-
tion, the mixed meal induces the secretion of incretins,
and at least one of these incretins (GLP-1) increases
coronary blood flow independent of insulin (471, 472).
It is very likely that GLP-1 also regulates coronary
microvascular perfusion, as studies recently reported
that GLP-1 recruits microvasculature and enhances
insulin delivery and glucose use in skeletal muscle
(473, 474). Researchers have yet to define the mecha-
nisms underlying myocardial capillary recruitment, and
thesemechanismsmost likely vary based on the particular
stimuli. In skeletal muscle, insulin andGLP-1 recruit muscle
microvasculature via a NO-dependent mechanism (67,
473, 475, 476), whereas exercise-induced muscle micro-
vascular recruitment is largely NO independent (477). It
is possible that in myocardium, both insulin and GLP-1
act via the NO-dependent mechanism, and exercise recruits
myocardial capillaries perhaps by increased metabolic
responses of the small arterioles.

Patients with diabetes have accelerated coronary
artery disease and are prone to develop diabetic car-
diomyopathy. Among many possible contributors are
microvascular abnormalities. The morphological changes
of small vessels seen in diabetic myocardium are exten-
sive, including periarterial fibrosis, arteriolar thickening,
focal constrictions, microvascular tortuosity, capillary
BM thickening, capillary microaneurysms, and decreased
capillary density (478, 479). In addition to structural
abnormalities, coronary microvascular dysfunction
also occurs in diabetes. Indeed, the maximal coronary
flow reserve is reduced, and endothelium-dependent cor-
onary vasodilation is clearly impaired in diabetes, even
in the presence of angiographically normal coronary
arteries and normal left ventricular systolic function
(480, 481). The reduction in myocardial blood flow re-
serve correlates significantly with average fasting glucose
concentrations and HbA1c (482), confirming the im-
portance of glycemic control in the maintenance of
cardiac health. In patients with T1DM and normal
exercise echocardiography and autonomic nervous
function, myocardial blood flow (measuredwith PET and

[15O]H2O) is;30% lower, and total coronary resistance
is 70% higher than normal healthy controls during hy-
peremia (483).

Endothelial dysfunction and insulin resistance, two
core defects associated with diabetes, are both present in
the coronary circulation and are most likely the major
early cause of coronary microvascular dysfunction.
Quantitative angiographic analysis of epicardial coro-
nary artery responses to stepwise intracoronary acetyl-
choline infusion clearly demonstrates impairment in
endothelium-dependent dilatation in diabetic patients
with no significant coronary atherosclerosis (481). Va-
sodilation of the coronarymicrocirculation in response to
sympathetic stimulation evoked by the cold pressor test is
also impaired in T2DM patients in the absence of sig-
nificant epicardial coronary artery lesions (484). Al-
though insulin-mediated increases in coronary blood
flow are maintained in young patients with T1DM
without microvascular complications or autonomic
neuropathy (459, 461), it is blunted in patients with
obesity (485) or T2DM (460). Raising plasma insulin
concentrations by ;eightfold by ingesting a mixed meal
not only fails to increase cardiacmicrovascular perfusion,
as is seen in healthy humans, but actually induces a
paradoxical decrease in many patients with diabetes
(470, 486). In the acute insulin-resistant state induced by
systemic lipid infusion, the myocardial microvascular
response to insulin is clearly blunted (443). However,
pretreatment with salsalate, an anti-inflammatory agent
that inhibits the NF-kB pathway, preserves the micro-
vascular response to insulin (468). These findings are
consistent with a prior report that free FAs cause en-
dothelial insulin resistance via NF-kB activation (487).
Another potential contributor to coronary microvascular
dysfunction is the increased blood viscosity commonly
seen in patients with diabetes. Hypertriglyceridemia, a
common feature of insulin resistance and insulin de-
ficiency, increases blood viscosity and decreases coronary
blood flow (488).

In patients with fixed stenoses in major coronary ar-
teries due to coronary atherosclerosis, blood supply to the
myocardium is limited. Although resting epicardial cor-
onary blood flow remains normal until .85% of the
lumen is obstructed, during hyperemia, total flow is re-
duced when the stenosis exceeds 50% (489–491), and
both microvascular blood volume and flow velocity are
depressed (490, 492). Under this circumstance, expan-
sion of the coronary microvascular blood volume could
markedly increase the endothelial exchange surface area.
The presence of insulin resistance in the coronary mi-
crovasculature could further limit the microvascular
blood volume and the capability of cardiac muscle to
extract oxygen and nutrients and receive signals from
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circulating anabolic factors. This may explain partly why
patients with diabetes tend to develop cardiac compli-
cations, including cardiomyopathy and heart failure. This
also suggests that the coronary microvascular endothelial
dysfunction and insulin resistance could be important
therapeutic targets in reducing cardiac morbidity asso-
ciated with diabetes.

Microvascular disease/dysfunction in the skin
The skin microvasculature plays an important phys-

iologic role in the body’s defenses against thermal and
mechanical injury and pathogen entry by maintaining the
health of the keratinized epithelium of the epidermis, as
well as the supporting dermis and subcutaneous tissues.
Diabetes can injure the skin’s microvasculature, which
could compromise the skin barrier and allow trans-
cutaneous microbe migration. Pathologically, thickening
of the BM and loss of pericyte coverage for microvessels
characterize injury to the skin’s microvasculature, similar
to responses in other tissues. The vessels leak plasma
proteins, and, perhaps as a consequence of this leaking
or as a consequence of hyperglycemia, the supporting
connective tissue becomes more cross-linked and stiff.
Microvascular injury may play a role in the development
of the limited joint mobility syndrome (493) that is seen in
both T1DM and T2DM and correlates with the pro-
gression of microvascular disease in the eye (494).

Beyond structural changes, there are abundant data
regarding vascular dysfunction in the skin in diabetes
(495). The skin (like the retina) is one of the few areas
where clinicians can directly observe and functionally test
the microvasculature. A significant body of data exists
that details the changes in microvascular perfusion that
occur as a result of diabetes or insulin resistance or
components of metabolic syndrome. Researchers have
used various techniques, including laser Doppler flux-
metry (496–498) and nail-bed capillaroscopy (499,
500), to characterize skin microvasculature in diabetes
(500–502), obesity (503), insulin resistance, and meta-
bolic syndrome (504).With well-established diabetes, the
vascular hyperemic response to skin heating is impaired,
as is the response to hypoxemia. There appears to be a
clear relationship between impaired microvascular
function and tissue metabolism in the feet of individuals
with diabetes. Tissue oxygen saturation and high-energy
phosphate stores are decreased in lower extremity skin in
individuals with diabetes compared with controls, and
this appears to be further aggravated when neuropathy is
present (495).

Impaired function of the skin microvasculature is a
key component contributing to delayed/deficient wound
healing in diabetes. This applies to both postsurgical
healing as well as spontaneous wound healing, as is seen

with diabetic foot ulcers (505, 506). For the former,
glycemic control is an important treatment intervention
to improve wound healing. For the latter, which are more
chronic wounds, there is a complex interplay between
local tissue factors, infection, blood flow, and friction/
pressure-related hyperkeratosis, each of which must be
addressed to optimize the likelihood of successful treat-
ment. Interestingly, recent work in experimental models
has suggested that a defect in endothelial progenitor cell
proliferation and subsequent recruitment to sites of injury
may be playing a significant role. The generation of EPCs
appears to depend onNO generation by eNOSwithin the
bone marrow compartment, and diabetes impairs this
(507). Beyond that, the recruitment of generated cells to
the area of inflammation is dependent upon local tissue
factors, which diabetes also decreases (507).

Microvascular dysfunction/disease in adipose tissue
Adipose tissue possesses an abundant microvascula-

ture, and most adipocytes are within one cell diameter
of a capillary. The resting blood flow to adipose tissue is
similar to that of resting skeletal muscle (2 to 4 mL/min/
100 g), and blood flow to each of these tissues increases
following a meal in healthy subjects (508, 509). These
changes can be blocked by b-blockade but not by
a-blockade or NOS inhibition, suggesting an important
role for adrenergic regulation. Inasmuch as adipose tissue
is a principal repository for dietary fats that circulate in
very LDL particles or chylemicrons, postprandial in-
creases in flow could enhance nutrient delivery and
storage. In muscle, meal ingestion increases both total
blood flow and capillary recruitment. Similar blood flow
and capillary recruitment may likewise occur post-
prandially in adipose tissue (510).

Interestingly, basal adipose blood flow is reduced, and
postprandial adipose blood flow increases are blunted or
absent in obese or T2DM subjects (510, 511). Sub-
cutaneous adipose tissue capillary density (capillaries/
mm2) is less in obese subjects (512), consistent with
capillary rarefaction similar to that seen in skeletalmuscle
in diabetes, obesity, and hypertension. The larger fat cell
size in subcutaneous tissue from obese diabetic subjects
may, in part, explain this apparent rarefaction, which
correlates well with the degree of insulin resistance
measured using the euglycemic clamp method.

Whether diminished adipose vascularity might have
metabolic consequences has been a topic of very recent
interest. Several groups had reported decreased tissue
oxygen tension within adipose tissue from obese rodents
(512–514). These groups hypothesized that this decrease
results in an oxidative stress within the tissue, which
might contribute to the development of inflamed adipose
tissues and the resultant release of inflammatory cytokines.
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This hypothesis has become more controversial with recent
data suggesting that in obese humans, subcutaneous adi-
pose tissue oxygen concentration was either minimally
lower (512) or higher (508) than is seen in lean, age- and
gender-matched control subjects. In the latter study, which
also demonstrated decreased vascularity and reduced blood
flow, the seemingly paradoxical adipose tissue hyperoxia
appeared secondary to decreased mitochondrial activity
and tissue energy expenditure. Whether these differences
between rodents and humans represent species differences or
differences between the methods used in the human com-
pared with the rodent studies is uncertain. It is clear that the
tissue pO2 in obese rodents is substantially lower (;20 mm
Hg) compared with obese humans (40 to 70 mm Hg). The
levels of oxygen seen in humans would not be expected to
trigger the same transcriptional programas seen inmice (e.g.,
enhanced expression of mRNA for HIF-1a, Glut-1, etc.).

The recognition of the close relationship between
adipose tissue microvasculature and the adipocyte has
recently provoked a number of very interesting in-
vestigations into the relationships between expanding fat
mass and microvascular angiogenesis or involution and
how both relate to body metabolic function. Over a
decade ago, Rupnick et al. (515) observed that angio-
genesis inhibitors could lead to significant weight loss in
ob/ob mice. This was particularly intriguing, as the effect
occurred using several different types of angiogenesis
inhibitors, and the animals tolerated the treatment quite
well. Withdrawal of the inhibitor allowed rapid regain of
the lost weight. The animals treated with the angiogenesis
inhibitors demonstrated increased apoptosis and de-
creased angiogenic activity in adipose tissue. The treated
animals consumed less food than control animals; how-
ever, this did not entirely explain the weight loss, which
was greater in the animals treated with the angiogenesis
inhibitors compared with pair-fed controls. More re-
cently, several intriguing studies have shown that adi-
pose tissue endothelium specifically targeted with a
proapoptotic peptide likewise caused weight loss in mice
(516, 517). This treatment affected a decrease in food
intake without other apparent toxicity. Importantly, it
did not affect appetite or body weight in lean control
animals (518). The mechanism responsible for this
obesity-dependent appetite decrease is unclear. It is in-
triguing that treating mice with proapoptotic peptide,
while causing vessel rarefaction in adipose tissue, im-
proved glucose tolerance and insulin resistance (516).
Studies targeting adipose angiogenesis did not assess
tissue oxygenation, so it is unclear how this work relates
to the hypothesis that adipose hypoxia causes a proin-
flammatory state and consequent insulin resistance.

Several other groups have reported finding a signifi-
cant relationship between the microvasculature and the

metabolic function of the adipocyte. When the VEGF
gene is overexpressed in the adipocyte using an AP2-
directed promoter, there is increased microvasculature
development, specifically in adipose tissue (both white
and brown) (518). These mice did not become obese
when placed on a high-fat diet. They also showed de-
creased M1 macrophage infiltration of fat, increased
thermogenesis, and improved glucose tolerance, and
maintained greater insulin sensitivity when compared
with high-fat–fed control mice. The complexity of this
relationship is underscored by the observation that
inhibiting VEGF-A expression (whole animal) using an
inducible repression system also diminished weight gain
on a high-fat diet and led to a browning of white adipose
tissue. In addition, VEGF-B expression was increased in
these mice, as were downstream FA transport proteins
regulated by VEGF-B (519). This is particularly in-
teresting in light of the report that knockout of VEGF-B
(whole body) prevented the development of insulin re-
sistance in db/db mice and improved glucose tolerance
(520). In part, these salutary metabolic effects appeared
due to decreased FA transport proteins in the endothe-
lium of muscle and heart, which slowed ectopic lipid
deposition at these sites.

Studies probing the relationship between VEGF ex-
pression and microvascular development have recently
been extended to muscle. Bonner et al. (521) created a
muscle-specific VEGF-A knockout mouse using the Cre/
lox method. VEGF-A was absent in both cardiac and
skeletal muscle, whereas plasma concentrations were
decreased ;25%. Accompanying this was nearly a 50%
decline in capillary volume in both skeletal and cardiac
muscle. Insulin sensitivity (euglycemic clamp) was di-
minished in the knockout animals due to a decline in
insulin-stimulated glucose disposal. However, when
muscles were excised and incubated in vitro with insulin
and glucose, metabolism appeared normal. This suggests
that the impairment in insulin-stimulated muscle glucose
uptake was due to poor muscle perfusion.

It could be that there is an entirely different re-
lationship between the microvasculature and adipose
within skeletal muscle. This relates to the fact that small
arterioles within both skeletal and cardiac muscle have a
surrounding envelope of adipocytes, and the volume of
this envelope increases with obesity. Nearly a decade ago
it was proposed that a local signaling process occurs
between perivascular adipose tissue and the microvas-
culature within skeletal muscle (522), and that adipo-
kines released by adiposemight influencemuscle nutritive
perfusion in a paracrine fashion. Such a process could
provide an important linkage in our understanding of the
relationship between adiposity, inflammation, and vas-
cular dysfunction that is prevalent in diabetes. Increases
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in perivascular adipose tissue are not restricted to skeletal
muscle. Indeed, several studies have noted an association
between perivascular adipose tissue in the thoracic aorta
and both extramural coronary circulation calcification
and CVD prevalence (523, 524).

Summary
In summary, there is now abundant evidence that

microvascular dysfunction/disease is by no means re-
stricted to the traditional target tissues (i.e., retina, kid-
ney, and peripheral nerve). Rather, it is a generalized
phenomenon affecting multiple tissues throughout the
body. This allows one to appreciate the pleiotropic effects
of diabetes on health. In addition, dysfunction of the
microvasculature in tissues like skeletal and cardiac
muscle, skin, and adipose also occurs in settings related to
insulin resistance and contributes to both metabolic and
other functional defects in these tissues.

Microvascular Disease in the Kidney

Introduction
Microvascular renal disease is part of the classical

triopathy of diabetes complications. It is a major con-
tributor to the development of ESKD in the developed
world. In addition to the morbidity/mortality provoked
by DN per se, it associates strongly with CVD progression
and mortality. In this study, we review the epidemiology of
DN, its pathogenesis, and evolving information on genetic
factors that either enhance or diminish the risk for devel-
opment or progression of DN in diabetic patients. We also
briefly highlight aspects of current treatment.

Epidemiology
Determining precise incidence and prevalence rates

for KD in subjects with diabetes depends on the defi-
nition applied. Excessive albuminuria and/or reduced
estimated GFRs (eGFRs) in subjects with diabetes are
associated with diabetic KD (DKD), but also to non-
diabetic KD, particularly in those with T2DMwho have
atypical clinical courses (short disease duration, severe
hypertension, rapidly changing kidney function, or
absence of DR). Between 2005 and 2010, National
Health and Nutrition Examination Survey data revealed
high rates of nephropathy among subjects with
diabetes—19.3% had an eGFR ,60 mL/min/1.73 m2

(using the Chronic Kidney Disease Epidemiology Col-
laboration formula), 29.9% an elevated urine albumin:
creatinine ratio $30 mg/g, and 8.6% had both albu-
minuria and low eGFR (525). Based on these definitions,
similar high rates of KD are present in patients with
undiagnosed diabetes (526), and 17.7% of patients with
prediabetes have KD (527). The incidence rate of CKD
was significantly higher among those with metabolic

syndrome (but lacking diabetes) in the Atherosclerosis
Risk In Communities study, relative to those without
metabolic syndrome (528). These studies demonstrate
that hyperglycemia can lead to reduced kidney function
and albuminuria prior to the onset of frank diabetes.

The incidence rate of diabetes-attributed nephropathy
in the US diabetes population has been stable for the past
2 decades (526, 529). This is concerning because it oc-
curred despite marked reductions in HbA1c and systemic
BPs, a.10-fold increase in prescription of statins (with a
mean 32 mg/dL reduction in LDL cholesterol), and a
nearly fourfold increase in use of renin-angiotensin al-
dosterone system (RAAS) inhibitors during this period.
Thus, these stable rates of diabetic patients developing
DKD will continue to translate into increasing patient
numbers with nephropathy due to rising rates of diabetes
and obesity. The prevalence of DKD in the US population
was estimated at 2.2% between 1988 and 1994 (95%CI:
1.8% to 2.6%), with significant increases to 2.8% (95%
CI: 2.4% to 3.4%) between 1999 and 2004, and 3.3%
(95% CI: 2.8% to 3.7%) between 2005 and 2008 (P ,
0.001 for trend) (525). Much of the excess morbidity and
mortality in subjects with diabetes appear to relate to the
presence of KD (530, 531).

The annual incidence rate of ESKD cases attributed to
DKD has also been relatively stable at 152 per million
population between 2000 and 2010, although dramatic
differences occur based on age and ethnicity (525). The
gender-adjusted incident rate for diabetes-attributed
ESKD in European Americans aged 30 to 39 years fell
by 1% from 2000 to 2010 (to 35.4 cases/million in 2010).
In contrast, African Americans, Native Americans, and
Asian Americans in this age range saw their incidence
rates increase by 69%, 30.1%, and 100% (133.8, 116,
and 32.6 million) during this period, respectively. The
rate of incident ESKD attributed to diabetes fell by 3.6%
between 2000 and 2010 in European Americans 60 to 69
years old, whereas it rose by 29% in those .70 years.
Between 2000 and 2010, the incidence rate of diabetes-
attributed ESKD in African Americans, Native Ameri-
cans, and Hispanic Americans aged 60 to 69 fell by
17.2%, 40.4%, and 15.7%, respectively.

Clinical presentation
Our understanding of the natural history of DKD has

evolved. Although best evaluated in T1DM with a clear
date of disease onset, the histologic and clinical courses
of DKD appear similar in T1DM and T2DM. In subjects
with hyperglycemia, we do not uniformly see the as-
sumed progression from preglomerular afferent arteri-
olar vasodilation to high renal blood flows, elevated
intraglomerular pressures, and intermittent then fixed
microalbuminuria with subsequent macroalbuminuria
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and declining GFR. Approximately 10% of subjects
with T1DMwill manifest steadily declining eGFR in the
absence of heavy proteinuria (129). Albuminuria and
loss of kidney function (declining eGFR) are independent
processes with different genetic bases (532).

Current levels of albuminuria divide into three
categories: normoalbuminuria (urine albumin:creati-
nine ratio ,30 mg/g), often further divided to high-
normal .15 mg/g, which extends into the previously
normal range; microalbuminuria (30 to 300 mg/g); and
macroalbuminuria (.300 mg/g), also known as overt
proteinuria.

Higher risk for CVD events is associated with higher
levels of albuminuria (533, 534). UKPDS (195) partici-
pants with T2DM and microalbuminuria had equivalent
rates of progressing to macroalbuminuria and death
(195). In those with macroalbuminuria, the risk of death
far exceeded the risk for developing progressive loss of
eGFR or initiating renal replacement therapy. The urine
albumin:creatinine ratio can vary by up to 40%on repeat
testing, and T1DMpatients with effective glycemic, lipid,
and BP control frequently experience microalbuminuria
remission (529, 531). Therefore, an abnormal urine
albumin:creatinine ratio may not be reflective of a risk
for progression in DKD.

During prolonged follow-up of T1DM subjects with
an initially normal eGFR (.60 mL/min), ;two-thirds of
patients with microalbuminuria and one-third with overt
proteinuria demonstrated stable renal function with low
risk for subsequent progression to ESKD (535, 536). In
contrast, one-third of those with microalbuminuria and
two-thirds with overt proteinuria had declining kidney
function and were at high risk for subsequent ESKD. The
rates of decline were variable between patients, but
remained relatively consistent in each individual. Early
eGFR slope appears predictive of a future rate of pro-
gression inDKD (536). In addition, researchers evaluated
the relatively frequent failure of ACE inhibitors (ACEi) to
halt progression of early T1DM KD. Although precise
mechanisms are unclear, poor glycemic control and hy-
percholesterolemia are most likely involved (535).

These data suggest independence between the devel-
opment and progression of pathologic changes in the
glomerular and interstitial renal compartments in DKD.
The glomerulus appears primarily responsible for pro-
teinuria. However, interstitial changes better predict
subsequent declines in kidney function, as in other forms
of nephropathy. In a study of RAAS-blocking agents in
the primary prevention of DKD, glomerular mesangial
fractional volumes (and other glomerular parameters)
were not appreciably different in normoalbuminuric
T1DM patients after 5 years of treatment with an ACEi,
ARB, or placebo (100). Additionally, interstitial changes

were not different between these treatment groups,
suggesting that RAAS blockers are not suitable for the
primary prevention of DKD, despite lowering systemic BPs.

Although many patients with progressive DKD and
falling eGFR have proteinuria, urine albumin:creatinine
ratios better predict CVD events and CVD mortality,
relative to the progression of KD (195). Damage to the
systemic vasculature, including in the glomerulus, relates
to endothelial dysfunction from hyperglycemia and most
likely contributes to albumin leakage into the urine. This
may not reflect diabetic glomerular changes, but con-
tributes to the high rates of CVD and death. Once on
renal replacement therapy, death rates from CVD remain
high in subjects with DKD. Adjusted 5-year survival on
dialysis was 32% in subjects with DKD through De-
cember 2010 (525).

Non-DN is frequently present and often misdiagnosed
as DKD in proteinuric patients with T2DM and brief
diabetes durations who have severe hypertension or rapid
loss of eGFR. Several studies report 50% or more of
proteinuric patients with T2DMundergoing renal biopsy
had nondiabetic CKD (423, 537, 538). Immunoglobulin
A nephropathy frequently coexists with DKD in Asian
and American Indian populations, as well (539). These
factors contribute to errors in calculating the true in-
cidence and prevalence of DKD and hamper treatment
trials in DKD by including cases with non-DKD. This is
further supported by the identification of two coding
nephropathy risk variants in the apolipoprotein L1
(APOL1) gene that contribute to African-ancestry
populations having the majority of nondiabetic CKD
cases.

APOL1 is strongly associated with a spectrum of
proteinuric KDs related to focal segmental glomerulo-
sclerosis, including HIV-associated nephropathy and
focal global glomerulosclerosis, which was errone-
ously attributed to hypertension in African Americans
(540–547). The APOL1 family of nondiabetic KDs
accounts for up to 40% of ESKD in African Americans.
T2DM and focal segmental glomerulosclerosis are
common in African ancestry populations and fre-
quently coexist. It is difficult to accurately determine
the cause of nephropathy in those with proteinuria and
T2DM without a kidney biopsy, a procedure not
commonly performed in patients with longstanding
diabetes. APOL1 genotyping may provide a non-
invasive tool for identifying CKD that is unrelated to
diabetes in individuals of African ancestry (548). As
discussed later, partitioning for APOL1 in African
Americans with clinically diagnosed DKD replicated
the FERMdomain-containing 3 (FRMD3) gene association
with DKD, an effect not possible prior to accounting for
APOL1 (548–550).
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A genetic component to diabetic KD risk
In addition to lifestyle and environment, genetic her-

itage is widely accepted as a contributor to the complex
phenotype of DKD. An improved understanding of the
genetic contributors to DKD has the potential to play a
significant role in early prediction, prevention, and efforts
to halt disease progression. For example, if genetic pre-
dictions using a combination of genetic variants that are
proven to predict higher DKD risk (i.e., a genetic risk
score) could identify patients at high risk for DKD, these
individuals could undergo active surveillance (with early
initiation of antihypertensive, blood sugar, and lipid-
lowering treatment) when diabetes is initially diagnosed.
The potential of this form of personalized medicine for
patients with diabetes has not yet been translated
into practice. There is little doubt that genetic varia-
tions contribute to DKD risk, supported by a wide
range of studies in both T1DM and T2DM in multiple
ethnicities. As outlined previously, ethnic disparities in
DKD prevalence suggest that the different natural
histories of human populations have resulted in genetic
architectures that confer different DKD risks. Familial
clustering and aggregation of DKD have been docu-
mented for discrete definitions of DKD (i.e., ESKD in
T1DM-affected European Americans and Europeans)
(551–553) and in diverse T2DM populations, such as
African Americans (554, 555), European Americans
(554),Canadians (556),NativeAmericans (557), Europeans
(558), East Asians (559), Brazilians (560), and South Asians
(561). In addition, familial aggregation in the form of her-
itability of quantitative measures of renal function (e.g.,
urinary protein excretion and eGFR) has been widely
reported (562–564), and segregation analyses in Eu-
ropean American (565) and Pima (566) diabetes families
suggest that genetics significantly influence variations in
urinary protein excretion.

The search for diabetic KD susceptibility genes
The broad acceptance that DKD has a significant

genetic component has motivated increasingly sophisti-
cated efforts to identify specific genetic polymorphisms
associated with DKD. A widely used approach is the
comparison of allele frequencies between DKD cases and
non-DKD controls, with KD defined as a dichotomous
trait (either affected or unaffected). The simplest ap-
proach has been candidate gene analysis, which entails
the assessment of genetic variations in one or more genes
with plausible physiological links to DKD. Candidate
gene studies continue to be reported in large numbers and
in diverse ethnicities. These studies are frequently based
on small numbers of cases and controls and often on
small numbers of genetic polymorphisms. Thus, they
have limited power and do not comprehensively test the

gene in question. Such studies, however, can contribute
to larger, better-powered meta-analysis efforts. Meta-
analyses, although better powered, also have limita-
tions, such as focusing on a limited number of genetic
variants and including diverse study samples that were
not collected in a uniform fashion.

Two large meta-analyses have evaluated the angio-
tensin 1–convertingACE insertion–deletion polymorphism
in diverse samples of T1DM and T2DM cases and control
subjects (567, 568). These studies concluded that the
ACE D allele was associated with DN risk with ORs in
the range of 1.1 to 1.3, an effect similar to many
common variant associations with complex diseases.
Mooyaart et al. (569) combined bioinformatic and
meta-analysis methods to evaluate evidence for genetic
associations with DKD. They reported that of 671
genetic association studies investigating DKD, re-
searchers identified 34 replicated genetic variants; 21
of these remained significantly associated with DKD
in a random–effects meta-analysis. Genetic variants in
the PKCb1 gene (PRKCB1) were associated with
T2DM KD in a carefully performed candidate gene
study from Hong Kong, with replication (32). How-
ever, results of these studies have not yet been trans-
lated into practice. This may prove difficult, given the
variations between the many studies of T1DM KD and
T2DM KD and variations in sample sizes and ethnic
origins. For example, many genes associated with DKD
failed to replicate when tested in European-derived
samples with T1DM KD (570).

Early studies using classical family-based linkage analysis
showed great promise. Vardarli et al. (571) performed a
genome linkage scan in Turkish kindreds with multiple
DKD-affected individuals. They observed a major linkage
peak on chromosome 18 [logarithm of odds score 6.6 (i.e.,
odds of 106.6:1) for linkage], revealing evidence for a novel
DKD gene. Analysis of this locus in the Pima Indian pop-
ulation provided some evidence of confirmation (572). The
carnosinase 1 gene (CNDP1) was ultimately implicated as
the likely cause of DKD on 18q (573).CNDP1 is expressed
in the brain and kidney, and carnosine is a scavenger of
oxygen-free radicals and may inhibit the formation of ad-
vanced glycosylation end products. A polymorphic tri-
nucleotide repeat in exon 2 of CNDP1 coding for a leucine
repeat in the leader peptide of the carnosinase-1 precursor
was associated with DKD. There are additional studies in
both T1DM and T2DM from multiple ethnic groups that
include several study designs (family based and case con-
trol). The CNDP1 association was replicated in European
Americans with T2DM KD (574), but an analysis of Eu-
ropean Americans only nominally associated CNDP1with
T1DM KD (575). Studies have extended the evaluation of
CNDP1 to test other genetic variations in the region,
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including the neighboringCNDP2 gene.McDonough et al.
(576) performed a detailed resequencing and analysis of
variants in the CNDP1 and CNDP2 genes in European
Americans and African Americans. DKD protection was
not observed in African Americans, suggesting that the
protection afforded by the CNDP1 was masked by addi-
tional CNDP1 and CNDP2 risk haplotypes, defined by
specific combinations of single-nucleotide polymorphisms
(SNPs). Analysis of this locus continues to be of interest
(577, 578).

There are a number of other family-based linkage
studies that include, in some cases, complementary as-
sociation analyses (579, 580). The Family Investigation
of Nephropathy andDiabetes study (581) included 11 US
clinical centers and nearly 10,000 European Americans,
African Americans, Mexican Americans, and American
Indians with T2DM KD. Initial analyses targeted the
relationship of both quantitative albuminuria and GFR
with DKD (582–584). In spite of these efforts, the sig-
nificance and impact of family-based linkage studies
remain unclear to human geneticists, with only a few
examples of linkage studies leading to the identification
of genes underlying complex traits such as DKD. Even in
successful cases, such as CNDP1, the overall clinical
implications remain uncertain.

Smaller and less comprehensive efforts are now
transitioning to larger, better-powered studies with more
comprehensive genetic analyses in DKD, including
genome-wide association studies (GWAS). Inmany cases,
this new generation of studies has multiple collaborating
research groups. For example, McKnight et al. (585)
initiated a new level of rigor in study design in their
analysis of the Warren 3/UK Genetics of Kidneys in
Diabetes Study Group cohort of T1DM patients, with
replication testing and meta-analysis of samples from the
Finnish Diabetic Nephropathy study. In total, McKnight
et al. evaluated .3400 samples with moderate evidence
for association (allelic P value 0.006, OR 1.27).

Initial GWAS in Japanese and Pima Indians suggested
an association between T2DM KD susceptibility and the
engulfment and cell motility 1 gene and the plasmacy-
toma variant translocation gene, respectively (586, 587).

Recent extensions of the earlier GWAS work reported
results for two genes, acetyl-coenzyme A carboxylase b

(ACACB) and FRMD3. A report by Maeda et al. (588)
identified SNPs in the ACACB gene associated with
proteinuria in T2DM, and these explorations have been
extended to multiple ethnic populations, with an asso-
ciated SNP being consistently more frequent in DKD
cases compared with controls (589). Additional in vitro
functional analysis further supports a role for ACACB
(588), and Murea et al. (590) have proposed that genes
involved in lipid metabolism, such as ACACB, could

influence DKD. Similarly, Pezzolesi et al. (549) performed a
GWAS for T1DMKD in a Genetics of Kidneys in Diabetes
sample and carried out a replication analysis in DCCT
and EDIC participants. Noteworthy was the identifi-
cation of association between DKD and the FRMD3
gene. Importantly, follow-up analyses in multiple
populations, including both T1DM and T2DM KD
cases, have also reported evidence for the association of
FRMD3with DKD (548, 591). A recent mechanistic study
proposed a pathway by which FRMD3 variants could
influence the risk of DKD based on transcriptional
regulation of bone morphogenetic protein pathway
genes (592).

A new generation of better-powered GWAS with in-
creasingly larger sample sizes is now appearing. One of
these is an African American T2DM-ESKD study
encompassing .5800 African Americans (550), and
another is an analysis of high-density GWAS data from
the Family Investigation of Nephropathy and Diabetes
consortiumwithmultiethnic samples.AlthoughMcDonough
et al. (550) detected no genome-wide significant associa-
tions with T2DM-ESKD (P #5 3 1028), multiple var-
iants in RNF185, LIMK2, SFI1, APOL3, and MYH9
demonstrated strong evidence of association with all-
cause ESKD, including advanced KD attributed to di-
abetes and nondiabetic etiologies. Strikingly, the majority
of these associations were based on the contribution of
protection from nephropathy, rather than risk. Sandholm
et al. (593) recently performed an analysis of T1DM KD
in subjects from both the Genetics of Nephropathy: an
International Effort cohort (including subjects from the
United Kingdom-Republic of Ireland, Finnish Diabetic
Nephropathy study) and the Genetics of Kidneys in Di-
abetes cohort (including .6500 European DNA sam-
ples). The analysis revealed several variants with strong
evidence of association with T1DM KD in the AFF3
(AF4/FMR2 family, member 3) gene (P = 1.26 3 1028,
OR = 1.26) and an intergenic SNP on chromosome 15q26
(P = 2.0 3 1029, OR = 1.80). An important addition to
this study was functional data suggesting that AFF3 is
involved in renal tubule fibrosis through the TGF-b1
pathway. The strongest genetic association with DKD
was in the Genetics of Nephropathy: an International
Effort study observed using T1DM-ESKD as the phe-
notype.With these encouraging new results fromGWAS
studies, optimism should be guarded; replication in
other large studies remains necessary.

Genetics of diabetic KD now and in the future
The search for genes associated with common and

complex diseases has been driven by technical de-
velopments such as the GWAS method. Even with con-
tinuing innovations, researchers have made limited
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progress in both T1DM KD and T2DM KD in all ethnic
groups. Given that DKD is a common disorder with high
public health impact, it is surprising that the sample sizes for
contemporary studies of DKD are small and powered only
to detect major genetic effects. In the future, researchers and
funding agencies should consider expanding available study
populations to enhance the power for gene detection.

Several research questions remain. Despite shared
chronic hyperglycemia, it is uncertain whether shared
genetic contributors in DKD exist for T1DM and T2DM.
Although there are several studies of DKD in T1DM and
T2DM that have identified genes (such as CNDP1,
ACACB, FRMD3, and ELMO1) that are shared across
populations (586, 594–596), the results are not com-
pelling. It is also unclear whether DKD genes will
translate their impact across ethnic differences within
human populations. It is striking that mutations in the
APOL1 gene are powerfully associated (OR 7.3 to 29)
(540, 547)with non-DKD forms of severe nephropathy in
African Americans, and yet, these APOL1 risk variants
are virtually absent in European-derived populations
(540, 597). The discovery of APOL1 is also in striking
contrast to the apparent heterogeneous genetic archi-
tecture of DKD. Although we do not have a complete
picture of DKD, there is clearly no genetic contributor to
DKD remotely as powerful as APOL1 is in non-DKD. In
sum, the goal of creating genetic risk scores (i.e., com-
binations of genetic variants that will aid in the prediction
of DKD risk) remains a work in progress.

This does notmean that creating genetic tools for DKD
that have clinical value will be beyond reach. As outlined
previously, the cornerstone of genetic research to date has
been the GWAS method, which is limited to common
variations and frequently captures information primarily
from noncoding variants in the genome. New technical
innovations have facilitated the creation of large and
growing databases of coding variants (both low fre-
quency and rare) through next-generation sequencing of
complete sets of exons from individual DNAs (exome
sequencing). Researchers are actively making use of these
resources to test for the impact of low-frequency coding
variants on DKD, and efforts are underway to perform
exome sequencing in DNAs from DKD-affected in-
dividuals. For example, the T2DM-Genes Consortium
sponsored exome sequencing for .1000 of the DKD
cases and controls from the African American T2DM-
ESKD GWAS (550). Equally, epigenetic mechanisms
(such as posttranslational methylation or demethylation
and histone acetylation to alter the expression of genes)
represent an attractive potential mechanism by which
the hyperglycemic environment could mediate renal
failure (83). Initial reports on epigenetic studies are
now appearing (598). These many paths of investigation

will undoubtedly reveal new insights into the genetic con-
tributors to DKD in the near future.

Current treatment
Therapies to prevent or slow the development of DKD

aremultifactorial and include lowering blood sugar levels
with medications, diet, and exercise, as well as treating
hypertension and hyperlipidemia. As previously dis-
cussed, an early decline in the eGFR slope best correlated
with subsequent risk of ESKD (535, 536). Maintaining
eGFR remains the primary focus for preventing advanced
DKD and slowing the progression to ESKD. Intensive
glycemic control in patients with T1DM and T2DM
prevents or delays the development of microvascular
complications and reduces the rate of development
of overt proteinuria. However, limited data exist on
whether improving glycemic control prevents low eGFRand
diabetic ESKD. Reducing albuminuria through improved
glycemic control and other treatments is expected to lower
CVD event rates but requires evaluation regarding how it
affects the rate of eGFR loss. It is expected that reducing
early-stageDKD,particularly overt proteinuria,will translate
into fewer cases of diabetic ESKD in the future (599).

Improving glycemic control remains the mainstay of
preventing and delaying DKD and other microvascular
complications, as has been shown in longitudinal studies
of T1DM and T2DM. The DCCT and subsequent
EDIC trial (600) demonstrated that intensive glucose
control in T1DM delayed the development and pro-
gression of microalbuminuria (601, 602). The UKPDS
reached similar conclusions in patients with T2DM,
reporting that improved glycemic control (metabolic
memory) produced prolonged delays or reductions in
microvascular complications, which are potentially
linked to epigenetic factors (197, 603). The more recent
ADVANCE, ACCORD, and Veterans Affairs Diabetes
trials extended this finding, all demonstrating signifi-
cant reductions in microalbuminuria and overt pro-
teinuria with intensive glycemic control (196, 199,
604). Improving blood sugar control in subjects with
the more advanced stages of DKD will most likely
reduce the rate of eGFR loss, as has been shown in
UKPDS and DCCT/EDIC (197, 600). However, this
may be less effective in halting the progression to
ESKD once critical reductions in nephron mass de-
velop. Based on these studies, and considering risks of
hypoglycemia, the National Kidney Foundation Kidney
DiseaseOutcomesQuality InitiativeGuidelines recommend
a target HbA1c of ;7% (and not treating to ,7%) to
prevent or delay progression of diabetic microvascular
complications, including DKD. A target HbA1c .7%
is recommended in those with comorbidities or limited
life expectancy and at risk for hypoglycemia (599).
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It is important to appreciate that kidney function can
impact the metabolism and safety of several blood
sugar–lowering medications. National Kidney Foun-
dation Kidney Disease Outcomes Quality Initiative
Guidelines suggest avoiding first-generation sulfonyl-
ureas when eGFR is,60 mL/min/1.73 m2. Instead, the
guidelines prefer second-generation glipizide to reduce
the risk of prolonged hypoglycemia (599). Caution
is urged when initiating meglitinides when eGFR
is ,30 mL/min/1.73 m2. US Food and Drug Admin-
istration guidelines recommend patients avoid met-
formin when eGFR is ,30 mL/min/1.73 m2 and avoid
starting metformin when eGFR is ,45 mL/min/1.73 m2.
Clinicians should closely follow people on metformin
whose GFR is between 30 and 45 mL/min/1.73 m2 and
assess them for risk factors for adverse effects of metformin.
Japanese and British guidelines also suggest withdrawal
when eGFR is ,30 mL/min/1.73 m2. Data suggest
additional dose adjustments (or avoidance) of diabetes
medications in patients with advanced nephropathy for
a-glucosidase inhibitors, DPP4 inhibitors, SGLT-2
inhibitors, incretin mimetics, and IAPP analogs (599).

Lowering systemic BPs with antihypertensive medi-
cations and dietary modification slows the development
and progression of DKD, although patients most likely
need to maintain lower BPs to sustain this benefit (603,
605). The Joint National Commission 7 recommends
RAAS-blocking agents. However, these agents appear to
be most effective at slowing DKD in patients with high
levels of proteinuria (606). Although RAAS blockers
often slowDKD progression, they do not reliably halt the
progression to ESKD. Cessation of RAAS blockers may
eventually become necessary in patients with stage-4 and
stage-5 CKD because of the excessive lowering of eGFR
due to reversible hemodynamic effects and hyperkalemia.
Studies attempting greater RAAS blockade by combining
two agents (ACEi and ARBs) carry greater risks for
adverse events and hyperkalemia and should be avoided
(607, 608).

It was disappointing that RAAS blockers proved to be
ineffective for the primary prevention of the earliest renal
histologic lesions of DKD (100). In a longitudinal kidney
biopsy trial, patients receiving an ARB ultimately had
higher levels of albuminuria than those on placebo (how-
ever, bothACEi andARBs reducedDR, relative to placebo).
Although RAAS blockers are first-line therapies for hy-
pertension in subjects with diabetes, they are not likely to
markedly reduce the subsequent development of DKD.
National Kidney Foundation Kidney Disease Outcomes
Quality Initiative Guidelines do not recommend the routine
use of RAAS-blocking agents in normotensive normoal-
buminuric subjects with diabetes, althoughACEi andARBs
are recommended in normotensive diabetic patients with a

urine albumin:creatinine ratio .30 mg/g who are believed
to be at risk for future DKD (599).

Anecdotal evidence suggests that statin therapy for
hyperlipidemia may slow nephropathy progression in
DKD. However, RCTs with statistically significant re-
sults are lacking (609). Statins often reduce CVD rates in
patients with and at risk for DKD. However, trials using
statins to lower LDL cholesterol have not demonstrated
reduced mortality in patients with diabetes and ESKD on
hemodialysis (610, 611). Difficulties controlling blood
sugars and the fact that RAAS inhibition was ineffective
at primary prevention led to studies testing novel medi-
cations for DKD, including inhibitors of advanced gly-
cation end-product formation and agents to reduce
oxidative stress and inflammation. To date, these agents
have not proven safe and effective for renal protection
(142, 612).

Because glycemic control remains the mainstay for
preventing DKD and slowing progression, it is critical to
appreciate the effect that advanced stages of DKD have
on the accuracy of tests used to assess glycemic control,
especially the HbA1c. Because hemoglobin resides in red
blood cells, HbA1c assesses glycemic control over the
preceding 120 days (the life span of a normal red blood
cell). In the late stages of DKD and ESKD, red blood cell
survival drops, and clinicians often prescribe medications
to treat anemia (erythropoietin). For given degrees of
glycemic control, HbA1c levels are markedly reduced in
patients with eGFR ,30 mL/min/1.73 m2 or those on
peritoneal dialysis or hemodialysis, relative to subjects
with normal kidney function (613, 614). Inaccurately low
HbA1c values provide a false sense of security to clini-
cians and patients (615). Interpretation of HbA1c in
patients with ESKD requires complex statistical adjust-
ment to better reflect ambient blood sugars. Markedly
high and low adjusted HbA1c values predict poorer
outcomes on dialysis (616, 617). Frequent serum glucose
monitoring or novel assays (glycated albumin and con-
tinuous glucose monitoring) may more accurately reflect
glycemia in patients with advanced DKD.

Summary
Renal microvascular dysfunction, which is common in

individuals with diabetes, is characterized by strong but
incompletely understood genetic predisposition. Its de-
velopment and progression are clearly affected by clinical
variables, including control of blood glucose and BP. The
success in controlling these variables achieved in the past
several decades along with other progress with risk factor
management are gratifying in that they have lessened
progression to ESKD. However, the increased prevalence
of diabetes significantly offsets this progress. Conse-
quently, diabetes remains a major contributor to renal
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failure and the associated increased mortality from CVD
seen with ESRD. Developing a more complete under-
standing of the genetic/molecular factors contributing to
initiation and progression of microvascular disease will
hopefully lead to evenmore successful preventive strategies.

The Microvasculature and
Diabetic Neuropathy

Introduction
Diabetic neuropathies are very common and trou-

blesome complications of diabetes that lead to morbidity
and mortality and a huge economic burden for diabetes
care (618, 619). Distal symmetric polyneuropathy
(DSPN) is the most common form of neuropathy. It is
responsible for 50% to 75% of nontraumatic amputa-
tions (619, 620). Diabetic neuropathy is a set of clinical
syndromes that affect distinct regions of the nervous
system, singly or combined. It may be silent and go
undetectedwhile exercising its ravages.Or, it may present
with clinical symptoms and signs that, although non-
specific and insidious with slow progression, mimic those
of other diseases. Clinicians, therefore, diagnose diabetic
neuropathy by exclusion. Unfortunately, diabetic neu-
ropathy is underdiagnosed. Even when symptomatic, less
than one third of physicians recognize diabetic neurop-
athy or discuss it with their patients (621).

Epidemiology
The epidemiology and natural history of diabetic

neuropathy remain poorly defined. This is due, in part, to
variable criteria for diagnosis, failure of many physicians
to recognize and diagnose the disease, and lack of
standardized methodologies for the evaluation of these
patients (622). It has nonetheless been estimated that
50% of patients with diabetes have diabetic neuropathy,
and in the United States, 2.7 million have painful neu-
ropathy. Of 25% of patients attending a diabetes clinic
who volunteered symptoms, 50% tested positive for
neuropathy after a simple clinical test (such as the ankle
jerk or vibration perception test), and almost 90% tested
positive to sophisticated tests of autonomic function or
peripheral sensation (623). Neurologic complications
occur in both T1DM and T2DM and in various forms of
acquired diabetes (51). The major morbidity associated
with DSPN is foot ulceration, a precursor to gangrene
and limb loss. DSPN increases the risk of amputation
1.7-fold. However, that risk jumps to 12-fold if there
are deformities (itself a consequence of neuropathy) and
36-fold if there is a history of previous ulceration (624).
Each year, 96,000 diabetic patients in the United States
undergo amputations. It is estimated that up to 75%of these
amputations are preventable (620). Diabetic neuropathy also

impacts QOL by causing pain, weakness, ataxia, and
incoordination (predisposing to falls and fractures)
(625). For patients over the age of 65, diabetes increases
fall risk by 17-fold, leading to fractures and traumatic
brain injury. Autonomic neuropathy likewise decreases
QOL and is associated with mortality rates between
25% and 50% within 5 to 10 years (626, 627).

DSPN causes a variety of syndromes for which there is
no universally accepted classification. Operationally,
they are subdivided into focal/multifocal neuropathies,
including diabetic amyotrophy and symmetric sensori-
motor polyneuropathy. The latter is the most common
type, affecting ;30% of diabetic patients in hospital
care and 25% of those in the community (628, 629).
DSPN is defined as a symmetrical, length-dependent,
sensorimotor polyneuropathy attributable tometabolic and
microvascular alterations resulting from chronic hyper-
glycemia exposure (diabetes) and cardiovascular risk
covariates (630). Its onset is generally insidious. Without
treatment, the course is chronic and progressive. The loss of
small-fiber–mediated sensation results in the loss of thermal
and pain perception, whereas large-fiber impairment results
in loss of touch and vibration perception. Sensory fiber
involvement may also result in positive symptoms, such as
paresthesias and pain. Nonetheless, up to 50% of neuro-
pathic patients can be asymptomatic.

Diabetic autonomic neuropathy rarely causes severe
symptoms (622, 631). However, in its cardiovascular
form, it is definitely associated with at least a threefold
increased risk for mortality (632–634). More recently,
studies have implicated diabetic autonomic neuropathy,
or even autonomic imbalance between the sympathetic
and the parasympathetic nervous systems, as predictors
of cardiovascular risk (633, 634).

Neuropathic pain is defined as “pain arising as a direct
consequence of a lesion or disease affecting the so-
matosensory system” (635). Diabetic neuropathy pain
is a clinical problem that is difficult to manage. It is often
associated with mood and sleep disturbances, and pa-
tients with diabetic neuropathy pain are more apt to seek
medical attention than those with other types of diabetic
neuropathy. Recognizing psychological problems early is
critical to themanagement of pain, and physicians need to
go beyond the management of pain if they are to achieve
success. Patients may also complain of decreased physical
activity and mobility, increased fatigue, and negative
effects on their social lives. Providing significant pain
relief markedly improves QOL measures (636, 637).

Classification of diabetic neuropathies
Figure 7 describes the classification Thomas proposed

(638), which was later modified (628, 639–641). It is
important to note that different forms of diabetic
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neuropathy often coexist in the same patient (e.g., distal
polyneuropathy and carpal tunnel syndrome).

Natural history of diabetic neuropathies
The natural history of diabetic neuropathies separates

them into two very distinctive entities, namely those that
progress gradually with increasing duration of diabetes,
and those that remit usually completely. Sensory and
autonomic neuropathies generally progress, whereas
mononeuropathies, radiculopathies, and acute painful
neuropathies (although manifesting severe symptoms)
are short-lived and tend to recover (642). The progression
of diabetic neuropathy is related to glycemic control in
both T1DMand T2DM (1, 643). It appears that the most
rapid deterioration of nerve function occurs soon after
the onset of T1DM.Within 2 to 3 years, there is a slowing
of the progress with a shallower slope to the curve of
dysfunction. In T2DM, slowing of NCVs may be one of
the earliest neuropathic abnormalities and often is present
even at diagnosis (644). After diagnosis, slowing of NCV
generally progresses at a steady rate of ;1 m/s/y, and
the level of impairment is positively correlated with
the duration of diabetes. Although most studies have
documented that symptomatic patients are more likely to
have slower NCVs than patients without symptoms,
NCVs do not correlate with the severity of symptoms. In a
long-term follow-up study of T2DM patients (645),
electrophysiologic abnormalities in the lower limb in-
creased from 8% at baseline to 42% after 10 years. In
particular, a decrease in sensory and motor amplitudes

(indicating axonal destruction) was more pronounced
than the slowing of NCVs. Using objective measures of
sensory function, such as the vibration perception
threshold test, researchers have reported a rate of decline
of 1 to 2 vibration units/year. However, this rate of
decline now appears to be less severe, most likely due to
improvements in general health and nerve nutrition. This
is particularly important when doing studies on the
treatment of diabetic neuropathy, which have always
relied on differences between drug treatment and placebo
and have apparently been successful because of the de-
cline in function occurring in placebo-treated patients
(646). Recent studies have pointed out the changing
natural history of diabetic neuropathy with the advent of
therapeutic lifestyle change and the use of statins and
ACEi, which have slowed the progression of diabetic
neuropathy and drastically changed the requirements
for placebo-controlled studies (62). It is also important
to recognize that diabetic neuropathy is a disorder
wherein the prevailing abnormality is loss of axons,
which electrophysiologically translates to a reduction in
amplitudes and not conduction velocities; therefore,
changes in NCV may not be an appropriate means of
monitoring progression or deterioration of nerve function.
Small, unmyelinated nerve fibers are affected early in
diabetes and are not reflected in NCV studies. Other
methods of measuring diabetic neuropathy that do
not depend on conduction velocities (such as quanti-
tative sensory testing, autonomic function testing, or
skin biopsy with quantification of intraepidermal nerve

Figure 7. Modified diabetic neuropathy classification first proposed by Thomas. N, normal. Reference: Jirousek et al. (25).
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fibers) are necessary to identify diabetic neuropathy
patients (647–649).

Pathogenesis of diabetic neuropathies
Historically, there were two competing hypotheses

regarding the origins of diabetic neuropathy. One school
of thought held that this was largely secondary to met-
abolic abnormalities within the nerve and/or Schwann
cells, whereas others held that diabetic neuropathy was
another manifestation of diabetic microvascular disease.
Increasingly, researchers believe that nerve and micro-
vascular injury both contribute to nerve dysfunction.
Some of the controversy arose because of the complexity
of how diabetic neuropathy presents, as well as the
limited ability to study the disease and its pathogenetic
mechanisms, particularly early in its course. Research has
clearly shown that with DSPN there is progressive axon
degeneration of all fiber types, and this is accompanied by
demyelination. However, microelectrode polarography
has shown sural nerve hypoxemia accompanied by di-
minished endoneural blood flow (650, 651), indicating
that these changes (which are the proximal cause for the
nerve dysfunction) are accompanied by changes in the
microvasculature.

Causative factors include persistent hyperglyce-
mia, oxidative and nitrosative stress, inflammation, and
autoimmune-mediated nerve destruction (see Biochemical
Pathways of Microvascular Injury). These factors affect
the microvasculature, Schwann cells, and the nerves
themselves. However, diabetic neuropathy is a heteroge-
neous group of conditions with widely varying pathology,
suggesting differences in pathogenic mechanisms for the
different clinical syndromes. Recognizing the clinical ho-
molog of these pathologic processes is the first step in
achieving the appropriate form of intervention. It is also
clear that structural changes in the microvasculature
within peripheral nerves occur early in the course of di-
abetes. It has been known for many years that the vessel
wall within peripheral nerves becomes thickened in in-
dividuals with DPN. This is attributed to increases in BM
thickness, which is accompanied by pericyte degeneration
and endothelial cell hyperplasia. These changes are, in
many ways, similar to what we see within the microvas-
culature in other tissues. We also see these qualitative
changes in individuals with diabetes without clinical

peripheral neuropathy, although the changes are quanti-
tatively less marked. These changes are typically more
marked in endoneural than in epineurial vessels for rea-
sons that are unclear.

Clinical presentation of diabetic neuropathies
The spectrum of clinical neuropathic syndromes de-

scribed in patients with diabetes includes dysfunction of
almost every segment of the somatic peripheral and au-
tonomic nervous system (38). We can distinguish each
syndrome by its pathophysiologic, therapeutic, and prog-
nostic features.

Focal and multifocal neuropathies
Focal neuropathies comprise focal-limb neuropathies

and cranial neuropathies. Focal limb neuropathies are
usually due to entrapment, and we must distinguish
mononeuropathies from these entrapment syndromes
(Table 5) (640). Mononeuropathies often occur in the
older population; they have an acute onset, are asso-
ciated with pain, and have a self-limiting course re-
solving in 6 to 8 weeks. Mononeuropathies can involve
the median (5.8% of all diabetic neuropathies), ulnar
(2.1%), radial (0.6%), and common peroneal nerves
(652). Cranial neuropathies in diabetic patients are
extremely rare (0.05%) and occur in older individuals
with a long duration of diabetes (653). Entrapment
syndromes start slowly, and will progress and persist
without intervention. Carpal tunnel syndrome occurs
3 times as frequently in patients with diabetes compared
with healthy populations (654) and is found in up to
one third of patients with diabetes. Its increased
prevalence in diabetes may be related to repeated un-
detected trauma, metabolic changes, and/or the accu-
mulation of fluid or edema within the confined space of
the carpal tunnel (640).

Proximal motor neuropathy (diabetic amyotrophy)
and chronic demyelinating neuropathies

For many years, clinicians thought that proximal neu-
ropathy was a component of diabetic neuropathy. There
was a poor understanding of its pathogenesis (655). As a
result, clinicians often left the condition untreated with the
anticipation that the patient would eventually recover, al-
beit over a period of some 1 to 2 years and after suffering

Table 5. Distinguishing Characteristics of Mononeuropathies, Entrapment Syndromes, and Distal
Symmetrical Polyneuropathy

Feature Mononeuropathy Entrapment Syndrome Distal Symmetric Neuropathy

Onset Sudden Gradual Gradual
Pattern Single nerve but may be multiple Single nerve exposed to trauma Distal symmetrical polyneuropathy
Nerves
involved

CN III, VI, VII, ulnar, median, and
peroneal

Median, ulnar, peroneal, medial, and lateral
plantar

Mixed, motor, sensory, and
autonomic
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considerable pain, weakness, and disability. Proximal
neuropathy has a number of synonyms, including diabetic
amyotrophy and femoral neuropathy. Its common features
include the following: (1) it primarily affects elderly patients
(50 to 60 years old) with T2DM; (2) the onset can be
gradual or abrupt; (3) it presents with severe pain in the
thighs, hips, and buttocks, followed by significantweakness
of the proximal muscles of the lower limbs and an inability
to rise from the sitting position; (4) it can start unilaterally
and then spread bilaterally; (5) it often coexists with DSPN;
and (6) it is characterized by muscle fasciculation, either
spontaneous or provoked by percussion. Its pathogenesis is
not yet clearly understood, although immune-mediated
epineurial microvasculitis occurs in some cases. Clinicians
generally prescribe immunosuppressive therapy using high-
dose steroidsor intravenous immunoglobulin (656). Proximal
neuropathy can occur secondary to a variety of conditions
unrelated to diabetes. However, these unrelated conditions
have a greater frequency in patients with diabetes than the
general population and include chronic inflammatory
demyelinating polyneuropathy, monoclonal gammopathy,
circulating GM1 antibodies, and inflammatory vasculitis
(653, 654, 657, 658).

In the classic form of diabetic amyotrophy, axonal loss
is the predominant process (659) and electrophysiologic
evaluation reveals lumbosacral plexopathy (660). In
contrast, if demyelination predominates and the motor
deficit affects proximal and distal muscle groups, clini-
cians should consider thediagnoses of chronic inflammatory
demyelinating polyneuropathy, monoclonal gammopathy
of unknown significance, and vasculitis (661, 662).
Clinicians often overlook these demyelinating condi-
tions. However, recognition is very important; unlike
diabetic neuropathy, they are sometimes treatable.
Furthermore, they occur 11 times more frequently in
diabetic than nondiabetic patients (663, 664). A biopsy
of the obturator nerve reveals deposits of immunoglobulin,
demyelination, and inflammatory cell infiltrate around the
vasa nervorum (657, 665). Cerebrospinal fluid protein
content is high, and there is an increase in the lymphocyte
count. Treatment options include intravenous immuno-
globulin for chronic inflammatory demyelinating poly-
neuropathy (666), plasma exchange for monoclonal
gammopathy of unknown significance, steroids and aza-
thioprine for vasculitis, and withdrawal of other drugs or
agents that may have caused vasculitis. It is important to
divide proximal syndromes into these two subcategories,
because the chronic inflammatory demyelinating poly-
neuropathy variant responds dramatically to in-
tervention (661, 667), whereas proximal neuropathy
amyotrophy runs its own course over months to years.
Until more evidence is available, clinicians should
consider these as separate syndromes.

Diabetic truncal radiculoneuropathy
Diabetic truncal radiculoneuropathy affects middle-

aged to elderly patients and has a predilection for themale
sex. Pain is the most important symptom, and it occurs
in a girdle-like distribution over the lower thoracic or
abdominal wall. It can be unilaterally or bilaterally dis-
tributed. Motor weakness is rare. Resolution generally
occurs within 4 to 6 months.

Generalized symmetric polyneuropathy

Acute sensory neuropathy. Some consider acute sensory
(painful) neuropathy a distinctive variant of distal sym-
metrical polyneuropathy. The syndrome is characterized
by severe pain, cachexia, weight loss, depression, and (in
males) erectile dysfunction. It occurs predominantly in
male patients and may appear at any time in the course of
both T1DM and T2DM. It is self-limiting and invariably
responds to simple symptomatic treatment. Conditions
such as Fabry’s disease, amyloidosis, HIV infection,
heavy metal poisoning (such as arsenic), and excess al-
cohol consumption should be excluded (638).

Acute sensory neuropathy is usually associated with
poor glycemic control but may also appear after a sudden
improvement in glycemic control and has been associated
with the onset of insulin therapy (occasionally referred to
as insulin neuritis) (668). Although the pathologic basis
has not been determined, one hypothesis suggests that
changes in blood glucose flux produce alterations in
epineurial blood flow, leading to ischemia. A study using
in vivo epineurial vessel photography and fluorescein
angiography demonstrated abnormalities in epineurial
vessels, including arteriovenous shunting and new-vessel
proliferation in patients with acute sensory neuropathy
(669). Some relate this syndrome to diabetic lumbosacral
radiculoplexus neuropathy and suggest a possible immune-
mediated mechanism (649).

Chronic sensorimotor neuropathy or distal
symmetric polyneuropathy

DSPN is seen in both T1DM and T2DM with similar
frequency, and it may be already present at the time of
T2DM diagnosis (644). A population survey reported
that 30% of T1DM and 36% to 40% of T2DM patients
experienced neuropathic symptoms (59). Several studies
have also suggested that impaired glucose tolerance may
lead to polyneuropathy. The studies reported rates of
impaired glucose tolerance between 30% and 50% in
patients with chronic idiopathic polyneuropathies
(670–674). Studies using skin and nerve biopsies have
shown a progressive reduction in peripheral nerve fibers
from the time of the diagnosis of diabetes or even from
earlier prediabetic stages (impaired glucose tolerance and
metabolic syndrome) (648, 675, 676). Sensory symptoms
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are more prominent than motor symptoms and usually
involve the lower limbs.

Mild muscle wasting may occur, but severe weakness is
rare, which should raise the question of a possible non-
diabetic etiology of the neuropathy (51, 622, 630, 649).

Clinical manifestations of small-fiber neuropathies
Clinical manifestations of small-fiber neuropathies

(Fig. 7) include symptoms of burning, superficial, or
lancinating pain often accompanied by hyperalgesia,
dysesthesia, and allodynia; disruption of small thinly
myelinated Ad and unmyelinated C fibers; a progression
to numbness; abnormal cold and warm thermal sensa-
tions; abnormal autonomic function with decreased
sweating, dry skin, cold feet, and impaired vasomotion
and skin blood flow; intact motor strength and deep
tendon reflexes; negativeNCV findings; loss of cutaneous
nerve fibers on skin biopsies; and clinical diagnosis by
reduced sensitivity to 1.0 g Semmes Weinstein mono-
filament and prickling pain perception using the War-
tenberg wheel or similar instrument.

Clinical manifestations of large-fiber neuropathies
Clinical manifestations of large-fiber neuropathies

(Fig. 7) include the following: disruption of large mye-
linated, rapidly conducting Aa/b fibers, which may in-
volve sensory and/or motor nerves; prominent signs with
sensory ataxia (waddling like a duck) and the wasting of
small intrinsic muscles of feet and hands with hammertoe
deformities and weakness of hands and feet; abnormal
deep tendon reflexes; impaired vibration, light touch,
and joint position perception; abnormal NCV findings;
increased skin blood flow with hot feet; higher risk of
falls, fractures, and the development of Charcot neu-
roarthropathy; and minimal symptoms, which may
include a sensation of walking on cotton, floors feeling
strange, inability to turn the pages of a book, inability to
discriminate among coins, and (in some patients with
severe distal muscle weakness) inability to stand on the
toes or heels.

Most patients with DPN, however, have a mixed
variety of neuropathy with both large and small nerve-
fiber damages.

Diagnosing diabetic peripheral neuropathy
In 2010, The Toronto Expert Panel on Diabetic

Neuropathy Classification redefined the minimal criteria
for the diagnosis of typical DPN (630).

The diagnosis of DPN should rest on the findings
from a clinical and neurologic examination. These in-
clude the presence of positive and negative neuropathic
symptoms and signs (either sensory or motor), such as
sensory deficits, allodynia, hyperalgesia, motor weak-
ness, or absence of reflexes (677).

When making a diagnosis of DPN, clinicians should
assess both symptoms and signs based on the following
guidelines:

(1) Symptoms alone have poor diagnostic accuracy in
predicting the presence of polyneuropathy.

(2) Signs are better predictors than symptoms.
(3) Multiple signs are better predictors than a single

sign.
(4) Relatively simple examinations are as accurate as

complex scoring systems.

Conditions mimicking diabetic neuropathy
Conditions that mimic diabetic neuropathy include

neuropathies caused by alcohol abuse, uremia, hypo-
thyroidism, vitamin B12 deficiency, peripheral arterial
disease, cancer, inflammatory and infectious diseases,
and neurotoxic drugs (70). An atypical pattern of the
presentation of symptoms or signs (i.e., the presence of
relevant motor deficits, an asymmetrical or proximal
distribution, or rapid progression) always requires re-
ferral for electrodiagnostic testing.

Clinical assessment tools for diabetic neuropathy
Clinical assessment should be standardized using

validated scores for both symptom severity and the degree
of reproducible neuropathic deficits. These would include
the Michigan Neuropathy Screening Instrument (678),
the Neuropathy Symptom Score for neuropathic symp-
toms, and the Neuropathy Disability Score or the Neu-
ropathy Impairment Score for neuropathic deficits (679).

Objective diagnosis of diabetic neuropathy
The neurologic examination should focus on the lower

extremities and include foot inspection for deformities,
ulcers, fungal infection, muscle wasting, hair distribution
or loss, and the presence or absence of pulses. Clinicians
should assess sensory modalities using simple handheld
devices (touch by cotton wool or soft brush; vibration by
128 Hz tuning fork; pressure by the Semmes-Weinstein
1 g and 10 g monofilament; pinprick by Wartenberg
wheel, Neurotip, or a pin; and temperature by cold and
warm objects) (680). Finally, clinicians should test the
Achilles reflexes (639, 681) (Table 6).

Nerve conduction studies
We recommend using electrophysiologic measures for

both clinical practice and multicenter clinical trials (682,
683). In a long-term follow-up study of T2DM patients
(645), NCV abnormalities in the lower limbs increased
from 8% at baseline to 42%after 10 years of disease. The
Diabetes Control and Complication trial reported a slow
progression of NCV abnormalities. The sural and pe-
roneal NCVs diminished by 2.8 and 2.7 m/s, respectively,
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over a 5-year period (643). Furthermore, in the same
study, patients who were free of neuropathy at baseline
had a 40% incidence of abnormal NCV in the con-
ventionally treated group vs 16% in the intensive
therapy-treated group after 5 years. However, the
neurophysiologic findings vary widely depending on
the population tested and the type and distribution of
the neuropathy. Patients with painful, predominantly
small-fiber neuropathy have normal test results. There is
consistent evidence that small, unmyelinated fibers are
affected early in diabetes, and routine NCV tests do not
diagnose these alterations. Therefore, other methods,
such as quantitative sensory testing or skin biopsy with
quantification of intraepidermal nerve fibers, are needed
to detect these patients (647–649). Nevertheless, elec-
trophysiological testing plays a key role in ruling out
other causes of neuropathy and is essential for the iden-
tification of focal and multifocal neuropathies (622, 639).

Summary of diagnosis of diabetic polyneuropathies
Adetailed clinical examination is the key to diagnosing

diabetic polyneuropathies. The last position statement of
the American Diabetes Association recommends that
clinicians should screen all patients with diabetes for
diabetic neuropathies at diagnosis in T2DM and 5 years
after diagnosis in T1DM. These screenings should occur
annually and must include sensory examinations of feet
and ankle reflexes (639).

The diagnosis of diabetic polyneuropathies is mainly
clinical and involves specific tests according to the type
and severity of the neuropathy. However, depending on
the clinical findings, other nondiabetic causes of neu-
ropathy must always be excluded.

Treatment of diabetic polyneuropathies
Diabetic polyneuropathy treatment should target dif-

ferent aspects of the disease in the following order: first,
underlying pathogenic mechanisms; second, symptoms and
improvement in QOL; and third, the complications of
neuropathy and their progression (83). We will review very
briefly in this work only those issues related to treating the
underlying pathogenetic mechanisms. A more complete
approach to clinical management of the consequences of

diabetic polyneuropathies is beyond the scope of this review
and can be found in other texts.

Treatment of specific underlying
pathogenic mechanisms

Glycemic and metabolic control. Several long-term
prospective studies have assessed the effects of inten-
sive diabetes therapy on the prevention and progression
of chronic diabetic complications (1, 197). In the DCCT
and UKPDS studies, only a minority of subjects had
symptomatic DSPN at entry. In the DCCT study, in-
tensive diabetes therapy slowed but did not completely
prevent the development of DSPN in T1DM patients. In
the DCCT/EDIC cohort, the benefits of former intensive
insulin treatment persisted for 13 to 14 years in T1DM
patients after DCCT closeout. These included a durable
beneficial effect on polyneuropathy and cardiac auto-
nomic neuropathy (hyperglycemic memory) (684, 685).

Conversely, in T2DMpatients, the results were largely
negative. The UKPDS showed a lower rate of impaired
vibration perception thresholds (vibration perception
thresholds .25 V) after 15 years for intensive therapy
vs conventional therapy (31% vs 52%, respectively).
However, the only additional time point at which vi-
bration perception thresholds reached a significant dif-
ference was the 9-year follow-up, whereas the rates after
3, 6, and 12 years did not differ between the groups.
Likewise, the rates of absent knee and ankle reflexes, as
well as the heart rate responses to deep breathing, did not
differ between the groups (197). In the ADVANCE study
(which included 11,140 patients with T2DM randomly
assigned to either standard glucose control or intensive
glucose control), the relative risk reduction (95% CI) for
new or worsening neuropathy for intensive vs standard
glucose control after a median of 5 years of follow-up
was 24 (210 to 2), without a significant difference be-
tween groups (604). Likewise, in the Veterans Affairs
Diabetes trial [including 1791 military veterans (mean
age, 60.4 years) with a suboptimal response to therapy
for T2DM], there were no differences between the in-
tensive or standard glucose control groups for DSPN or
microvascular complications after a median follow-up of

Table 6. Examination: Bedside Sensory Tests

Sensory Modality Nerve Fiber Instrument Associated Sensory Receptors

Vibration Ab (large) 128 Hz Ruffini corpuscle mechanoreceptors
Tuning fork

Pain (pinprick) C (small) Neuro-tips Nociceptors for pain and warmth
Pressure Ab, Aa (large) 1 g and 10 g Pacinian corpuscle

Monofilament
Light touch Ab, Aa (large) Wisp of cotton Meissner’s corpuscle
Cold Ad (small) Cold tuning fork Cold thermoreceptors
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5.6 years (88). The ACCORD trial (196) halted intensive
therapy aimed at HbA1c ,6.0% before the study ended
(because of a higher mortality in that group) and tran-
sitioned patients to standard therapy after 3.7 years, on
average. At transition, sensation to light touch was sig-
nificantly improved on intensive vs standard diabetes
therapy. After 5 years (end of study), patients on intensive
therapy had a better Michigan Neuropathy Screening
Instrument Score and significant improvements in sen-
sation to vibration and light touch vs patients on standard
diabetes therapy. However, because of the premature
study termination and the aggressive HbA1c goal, the
neuropathy outcome in the ACCORD trial is difficult to
interpret.

In the Steno 2 study (686), intensified multifactorial risk
intervention (including intensive diabetes treatment, ACE
inhibitors, antioxidants, statins, aspirin, and smoking ces-
sation) in patients with microalbuminuria showed no effect
on DSPN after 7.8 years (range: 6.9 to 8.8) and 13.3 years
(patients were subsequently followed for a mean of 5.5
years). However, the progression of cardiac autonomic
neuropathywas reduced by 57%.Thus, there is no evidence
that intensive diabetes therapy or a target-driven in-
tensified intervention aimed at multiple risk factors
favorably influences the development or progression of
DSPN, as opposed to cardiac autonomic neuropathy in
T2DM patients. However, the Steno study used only
vibration detection, which exclusively measures the
changes in large-fiber function.

Oxidative stress. A number of studies have shown that
hyperglycemia causes oxidative stress in tissues that are
susceptible to diabetes complications, including the mi-
crovasculature and peripheral nerves. Therapies that are
under investigation include AR inhibitors, ALA, g-linolenic
acid, benfotiamine, Metanx, and PKC inhibitors.

As discussed elsewhere in this review, excess glucose in
diabetic patients accelerates AGE generation, which leads
to intra- and extracellular protein cross-linking and
protein aggregation. RAGE activation alters intracellular
signaling and gene expression, releases proinflammatory
molecules, and results in an increased production of ROS
that contributes to diabetic microvascular complications.
Aminoguanidine, an inhibitor of AGE formation, showed
good results in animal studies, but trials in humans have
been discontinued because of toxicity (687). Benfoti-
amine is a transketolase activator that reduces tissue
AGEs. Several independent pilot studies have demon-
strated its effectiveness in diabetic polyneuropathy. In a
3-week placebo-controlled study, subjective improve-
ments in neuropathy scores were seen in the group that
received 200 mg daily of benfotiamine tablets, with a
pronounced decrease in reported pain levels (688). In a

12-week study, the use of benfotiamine plus vitaminB6/B12
significantly improved NCV in the peroneal nerve along
with appreciable improvements in vibratory perception. An
alternate combination of benfotiamine (100 mg) and
pyridoxine (100mg)has improveddiabetic polyneuropathy
in a small number of diabetic patients (689).

Metanx is a natural food product for managing en-
dothelial dysfunction. It contains L-methyl-folate, pyri-
doxal 50-phosphate, and methylcobalamin. Metanx
counteracts endothelial NOS uncoupling and oxidative
stress in vascular endothelium and peripheral nerves. A
24-week, double-blinded, placebo-controlled multisite
study concluded that, although there was no significant
change in vibration perception threshold, there were
significant improvements in both neuropathic symptoms
and mental health (690). Metanx significantly improved
the Neuropathy Total Symptoms Score-6 (which includes
numbness, tingling, aching, burning, lancinating pain,
and allodynia) at week 16 (P = 0.013) and week 24 (P =
0.033) vs placebo. Moreover, there were significant
improvements on the Mental Health Component of the
Short Form-36 Health Survey. In this study, metformin
use was a major predictor of a beneficial response.
Metformin can cause vitamin B12 deficiency and neu-
ropathy (691). In particular, previously established
normal values have grossly underestimated the level at
which the peripheral nervous system is at risk (692, 693)
(levels .400 pg/mL are required for neuronal integrity).
These findings support the use ofMetanxas a safe approach
for short-termalleviationof diabetic neuropathy symptoms,
although we need future studies to further define these
effects and their impact on long-term outcomes.

AR inhibitors reduce the flux of glucose through the
polyol pathway, inhibiting tissue accumulation of sor-
bitol and fructose. A 12-month study of zenarestat
reported a dose-dependent improvement in nerve-fiber
density (694). A 1-year trial of fidarestat in Japanese
patients with diabetes reported an improvement of
symptoms (695), and a 3-year study of epalrestat showed
improved NCV and vibration perception (100). Studies
are currently exploring newer ARIs, and some positive
results have emerged (696, 697). However, it is becoming
clear that these newer ARIs alone may not be sufficient,
and combinations of treatments may be needed (640).

Patients have used ALA or thioctic acid, which have
antioxidant and thiol-replenishing redox-modulating
properties. A number of studies show a favorable in-
fluence of these agents on microcirculation and on the
reversal of symptoms of neuropathy (698–700). A meta-
analysis including 1258 patients from four RCTs
concluded that 600 mg intravenous ALA daily signifi-
cantly reduced symptoms of neuropathy and improved
neuropathic deficits (701). The SYDNEY 2 trial showed
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significant improvement in neuropathic symptoms and
neurologic deficits in 181 diabetic patients with three
different doses of ALA compared with placebo over a
5-week period (702). The NATHAN 1 trial examined the
long-term efficacy and safety of ALA. The trial randomly
assigned diabetic patients (n = 460) with mild-to-
moderate DSPN to oral treatment with 600 mg ALA
once daily (n = 233) or placebo (n = 227) for 4 years. The
primary end point was a composite score (NIS-LL and 7
neurophysiologic tests). The study showed that 4-year
treatment with ALA in mild-to-moderate DSPN did not
influence the primary composite end point. However,
ALA did result in a clinically meaningful improvement
and prevention of progression of neuropathic impair-
ments, and it was well tolerated. The primary reason the
composite score did not improve was that nerve con-
duction deficits in the placebo-treated group did not
progress. Thus, the study was unable to show secondary
prevention of progression of the composite end point by
treatment with ALA (703).

We need further investigation to clarify ALA’s effect on
neuropathic deficits vs nerve conduction parameters and/or
quantitative sensory tests. Additionally, we need to address
cost-benefit analyses, optimal treatment duration, and de-
lineation of patients with disease characteristics most likely
to benefit from ALA supplementation (704).

PKCactivation is a critical step in the pathway todiabetic
microvascular complications. Both hyperglycemia and
disordered FA metabolism activate PKC, resulting in the
increased production of vasoconstrictive, angiogenic, and
chemotactic cytokines (including TGF-b, VEGF, ET-1, and
intercellular adhesion molecules). A multinational, ran-
domized, phase-2, double-blind, placebo-controlled trial
with RBX (a PKCb inhibitor) failed to achieve the primary
endpoints, although it reported significant changes in a
number of domains (61). Nevertheless, there was a statis-
tically significant improvement in symptoms and vibratory
detection thresholds in RBX- vs placebo-treated subjects
in a subgroup of patients with clinically significant symp-
toms but less severe diabetic neuropathy at baseline (sural
nerve action potential .0.5 mV) (705). A recent, smaller,
single-center study showed improvements in symptom
scores, endothelium-dependent skin blood flow measure-
ments, and QOL scores in the RBX-treated group (646).
These studies and the NATHAN studies point to a change
in the natural history of diabetic neuropathy due to the
advent of therapeutic lifestyle change, statins, and ACEi.
These factors have slowed the progression of diabetic
neuropathy and drastically altered the requirements for
placebo-controlled studies.

Growth factors. There is increasing evidence that there
is a deficiency of nerve growth factor in diabetes, as well

as a deficiency of dependent neuropeptides substance P
and calcitonin gene-related peptide, and that this con-
tributes to the clinical perturbations in small-fiber
function (706). Clinical trials with nerve growth factor
have not been successful and are subject to certain caveats
with regard to design. Nevertheless, nerve growth factor
still holds promise for sensory and autonomic neurop-
athies (623). The pathogenesis of diabetic neuropathy
includes loss of vasa nervorum, so it is likely that the
appropriate application of VEGF would reverse the
dysfunction. Introducing the VEGF gene into the muscle
of diabetic animal models improved nerve function (707).
There are ongoing VEGF gene studies involving the
transfection of the gene into human muscle.

Immune therapy
Several autoantibodies have been found in human sera

that are both associated with diabetic neuropathy and
can react with epitopes in neuronal cells. One study re-
ported that in patients with diabetes there was a 12%
incidence of an association between a predominantly
motor form of neuropathy and monosialoganglioside
antibodies (anti-GM1 antibodies) (665). Perhaps the
clearest link between autoimmunity and neuropathy is
the 11-fold increased likelihood of chronic inflammatory
demyelinating polyneuropathy, multiple motor poly-
neuropathy, vasculitis, andmonoclonal gammopathies in
diabetes (663). New data, however, support a predictive
role of the presence of antineuronal antibodies on the
later development of neuropathy, suggesting that these
antibodies may not be innocent bystanders but neu-
rotoxins (625, 708). There may be selected cases
(particularly those with autonomic neuropathy, evi-
dence of antineuronal autoimmunity, and chronic in-
flammatory demyelinating polyneuropathy) that may
benefit from intravenous immunoglobulin or large-
dose steroids (661).

Summary
Diabetic neuropathies are some of the most common

complications of diabetes that lead to significant mor-
bidity and mortality and higher health care costs. The
spectrum of clinical neuropathic syndromes described in
patients with diabetes includes dysfunction of almost
every segment of the somatic, peripheral, and autonomic
nervous system. Focal neuropathies include focal-limb
neuropathies due to entrapment syndromes and cranial
neuropathies. Proximal muscle weakness from amyo-
trophy and chronic demyelinating neuropathies both
occur with increased frequency in the diabetic pop-
ulation, but require different treatments. Distal neurop-
athies include DSPN and a distinctive variant known as
acute sensory neuropathy, which are diagnosed by history
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and clinical examination. Specific diagnostic testing (e.g.,
quantitative sensory testing, skin biopsy and intraepidermal
nerve-fiber density analysis, contact heat-evoked potentials,
sudomotor function testing, and nerve conduction studies)
can aid in the diagnosis and treatment.

Intensive glycemic and metabolic control can signifi-
cantly influence the development or progression of DSPN,
but not reverse established neuropathy. Therapies, in-
cluding benfotiamine, AR inhibitors, Metanyx, and ALA,
to reduce oxidative and nitrosative stress have shown
encouraging results.

Conclusion

Increasingly we have learned that the microvasculature
within different tissues serves multiple functions beyond
being a conduit for exchange of respiratory gases, nu-
trients, and metabolic waste. Consequently, microvas-
cular injury can express common and unique changes at
different sites. The dynamic between microvascular in-
jury and repair determines the manifestation of tissue-
specific injury. Diabetes affects both injury and repair
processes in a manner distinct from other vascular dis-
eases. We have summarized both the general molecular
processes involved in diabetic microvascular disease and
many of their tissue-specific expressions. Clearly, there is
much we still do not understand, and consequently, our
ability to successfully intervene to prevent or reverse
microvascular disease is quite limited. Insights gained by
the use of newer tools, including genetic, proteomic,
metabolomics, and other analyses, will certainly add new
insights in the basic functioning of microvascular cells,
and these insights will light the way to improved
therapies.
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70. Lassègue B, San Martı́n A, Griendling KK. Biochemistry, physi-
ology, and pathophysiology of NADPH oxidases in the cardio-
vascular system. Circ Res. 2012;110(10):1364–1390.

71. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M,
Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T,
Griendling K, Harrison DG, Forstermann U, Munzel T. Mecha-
nisms underlying endothelial dysfunction in diabetesmellitus.Circ
Res. 2001;88(2):E14–E22.

72. Kim YK, Lee MS, Son SM, Kim IJ, Lee WS, Rhim BY, Hong KW,
Kim CD. Vascular NADH oxidase is involved in impaired
endothelium-dependent vasodilation in OLETF rats, a model of
type 2 diabetes. Diabetes. 2002;51(2):522–527.

73. Garcia Soriano F, Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet
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88. Tütüncü NB, Bayraktar M, Varli K. Reversal of defective nerve
conduction with vitamin E supplementation in type 2 diabetes:
a preliminary study. Diabetes Care. 1998;21(11):1915–1918.

89. Han T, Bai J, LiuW, Hu Y. A systematic review andmeta-analysis
of a-lipoic acid in the treatment of diabetic peripheral neuropathy.
Eur J Endocrinol. 2012;167(4):465–471.

90. Reddy VP, Obrenovich ME, Atwood CS, Perry G, Smith MA.
Involvement ofMaillard reactions in Alzheimer disease.Neurotox
Res. 2002;4(3):191–209.

91. Chen CY, Abell AM, Moon YS, Kim KH. An advanced glycation
end product (AGE)-receptor for AGEs (RAGE) axis restores
adipogenic potential of senescent preadipocytes through modu-
lation of p53 protein function. J Biol Chem. 2012;287(53):
44498–44507.

92. Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D.
Cellular receptors for advanced glycation end products: impli-
cations for induction of oxidant stress and cellular dysfunction in
the pathogenesis of vascular lesions. Arterioscler Thromb. 1994;
14(10):1521–1528.

93. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced
glycation end products: sparking the development of diabetic
vascular injury. Circulation. 2006;114(6):597–605.

94. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, TakeuchiM,
Watanabe T, Yamagishi S, Sakurai S, Takasawa S, Okamoto H,
Yamamoto H. Development and prevention of advanced diabetic
nephropathy in RAGE-overexpressing mice. J Clin Invest. 2001;
108(2):261–268.

95. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ, Jr, ChowWS, Stern
D, Schmidt AM. Suppression of accelerated diabetic atheroscle-
rosis by the soluble receptor for advanced glycation endproducts.
Nat Med. 1998;4(9):1025–1031.

96. Li G, Tang J, Du Y, Lee CA, Kern TS. Beneficial effects of a novel
RAGE inhibitor on early diabetic retinopathy and tactile allo-
dynia. Mol Vis. 2011;17:3156–3165.

97. Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and
biomarker in unraveling the RAGE axis in chronic disease and
aging. Biochem Pharmacol. 2010;79(10):1379–1386.

98. Jandeleit-Dahm KA, Lassila M, Allen TJ. Advanced glycation end
products in diabetes-associated atherosclerosis and renal disease:
interventional studies. Ann N Y Acad Sci. 2005;1043:759–766.

99. Burnier M, Zanchi A. Blockade of the renin-angiotensin-
aldosterone system: a key therapeutic strategy to reduce renal
and cardiovascular events in patients with diabetes. J Hypertens.
2006;24(1):11–25.

100. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T,
Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R.
Renal and retinal effects of enalapril and losartan in type 1 di-
abetes. N Engl J Med. 2009;361(1):40–51.

101. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II
stimulates extracellular matrix protein synthesis through in-
duction of transforming growth factor-beta expression in rat
glomerular mesangial cells. J Clin Invest. 1994;93(6):2431–2437.

102. Zou Y, Komuro I, Yamazaki T, Kudoh S, Aikawa R, Zhu W,
Shiojima I, Hiroi Y, Tobe K, Kadowaki T, Yazaki Y. Cell type-
specific angiotensin II-evoked signal transduction pathways:
critical roles of Gbetagamma subunit, Src family, and Ras in
cardiac fibroblasts. Circ Res. 1998;82(3):337–345.

103. Wang N, Zheng Z, Jin HY, Xu X. Treatment effects of captopril
on non-proliferative diabetic retinopathy. Chin Med J (Engl).
2012;125(2):287–292.

104. Harindhanavudhi T, Mauer M, Klein R, Zinman B, Sinaiko A,
Caramori ML; Renin Angiotensin System Study (RASS) Group.
Benefits of renin-angiotensin blockade on retinopathy in type 1
diabetes vary with glycemic control. Diabetes Care. 2011;34(8):
1838–1842.

105. Wilkinson-Berka JL, Tan G, Binger KJ, Sutton L, McMaster K,
Deliyanti D, Perera G, Campbell DJ, Miller AG. Aliskiren reduces
vascular pathology in diabetic retinopathy and oxygen-induced
retinopathy in the transgenic (mRen-2)27 rat.Diabetologia. 2011;
54(10):2724–2735.

106. Wu X, He Y, Jing Y, Li K, Zhang J. Albumin overload induces
apoptosis in renal tubular epithelial cells through a CHOP-
dependent pathway. OMICS. 2010;14(1):61–73.

107. Jing G, Wang JJ, Zhang SX. ER stress and apoptosis: a new
mechanism for retinal cell death. Exp Diabetes Res 2012;2012:
589589. 10.1155/2012/589589

108. WuYB, LiHQ,RenMS, LiWT, LvXY,Wang L. CHOP/ORP150
ratio in endoplasmic reticulum stress: a new mechanism for di-
abetic peripheral neuropathy. Cell Physiol Biochem. 2013;32(2):
367–379.

109. Sainz IM, Pixley RA, Colman RW. Fifty years of research on the
plasma kallikrein-kinin system: from protein structure and
function to cell biology and in-vivo pathophysiology. Thromb
Haemost. 2007;98(1):77–83.

110. Marceau F, Regoli D. Bradykinin receptor ligands: therapeutic
perspectives. Nat Rev Drug Discov. 2004;3(10):845–852.

111. Clermont A, Chilcote TJ, Kita T, Liu J, Riva P, Sinha S, Feener EP.
Plasma kallikrein mediates retinal vascular dysfunction and in-
duces retinal thickening in diabetic rats. Diabetes. 2011;60(5):
1590–1598.

112. Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener
EP. Plasma kallikrein mediates angiotensin II type 1 receptor-
stimulated retinal vascular permeability. Hypertension. 2009;
53(2):175–181.

113. AbdouhM, Talbot S, Couture R, Hasséssian HM. Retinal plasma
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680. HaanpääML, BackonjaM-M, BennettMI, Bouhassira D, Cruccu
G, Hansson PT, Jensen TS, Kauppila T, Rice ASC, Smith BH,
Treede R-D, Baron R. Assessment of neuropathic pain in primary
care. Am J Med. 2009;122(10, Suppl):S13–S21.

681. Boulton AJM, Gries FA, Jervell JA. Guidelines for the diagnosis
and outpatient management of diabetic peripheral neuropathy.
Diabet Med. 1998;15(6):508–514.

682. AmericanDiabetesAssociationAmericanAcademyofNeurology.
Consensus statement: report and recommendations of the San
Antonio conference on diabetic neuropathy.Diabetes Care. 1988;
11(7):592–597.

683. Diabetic polyneuropathy in controlled clinical trials: Consensus
Report of the Peripheral Nerve Society. Ann Neurol. 1995;38(3):
478–482.

684. Albers JW, Herman WH, Pop-Busui R, Feldman EL, Martin CL,
Cleary PA, Waberski BH, Lachin JM; Diabetes Control and
Complications Trial /Epidemiology of Diabetes Interventions and
Complications Research Group. Effect of prior intensive insulin
treatment during the Diabetes Control and Complications Trial
(DCCT) on peripheral neuropathy in type 1 diabetes during the
Epidemiology of Diabetes Interventions and Complications
(EDIC) Study. Diabetes Care. 2010;33(5):1090–1096.

doi: 10.1210/jc.2017-01922 https://academic.oup.com/jcem 67

Downloaded from https://academic.oup.com/jcem/article-abstract/doi/10.1210/jc.2017-01922/4604942
by White and Case LLP user
on 13 November 2017 http://guide.medlive.cn/

http://dx.doi.org/10.1210/jc.2017-01922
https://academic.oup.com/jcem
http://guide.medlive.cn/
http://guide.medlive.cn/


685. Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW,
Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH;
DCCT/EDIC Research Group. Effects of prior intensive insulin
therapy on cardiac autonomic nervous system function in type 1
diabetes mellitus: the Diabetes Control and Complications Trial/
Epidemiology of Diabetes Interventions and Complications Study
(DCCT/EDIC). Circulation. 2009;119(22):2886–2893.

686. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a
multifactorial intervention on mortality in type 2 diabetes.NEngl
J Med. 2008;358(6):580–591.

687. Miyauchi Y, Shikama H, Takasu T, Okamiya H, Umeda M,
Hirasaki E, Ohhata I, Nakayama H, Nakagawa S. Slowing of
peripheral motor nerve conduction was ameliorated by amino-
guanidine in streptozocin-induced diabetic rats. Eur J Endocrinol.
1996;134(4):467–473.
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